The calculation of Lamé polynomials

By J. H. Wilkinson*

The coefficients of Lamé polynomials may be determined from the eigenvectors of certain tri-
diagonal matrices. Although these matrices have extraordinarily ill-conditioned eigensystems it
is shown that there is a simple procedure by means of which the eigenvectors may be determined
accurately without resorting to high-precision arithmetic.

1. Introduction

In a recent publication Arscott and Khabaza (1962)
discussed the calculation of Lamé polynomials and gave
extensive tables of the coefficients. The accurate deter-
mination of these coefficients was based on a minor
modification of a method suggested by Wilkinson; from
the point of view of numerical stability this method has
rather remarkable properties and these form the subject
of this paper.
The Lamé polynomials arise in connexion with the
solution of Lamé’s equation
d*w

57 T A= nn + Dk2sn?zyw = 0 M

where snz = sn(z, k) is the Jacobian elliptic function.
When 7 is an integer (which we may take to be positive
since the equation (1) is invariant with respect to the
substitution n— — n — 1) and A takes one of a set of
2n + 1 eigenvalues, the equation has solutions of the
form

w = sn°zcn°zdn*zF(sn?z), 2

where p, o, 7 = 0 or 1, and F(sn?z) is a polynomial of
degree 4(n — p — 0 — 7). There are thus eight types
of solution corresponding to the eight possible com-
binations of p, o, 7. Since all eight types behave in
much the same way as regards the phenomenon we wish
to discuss, we concentrate on type 1 for which
p=oc=1=0. This type exists only when n is even
(n = 2N) and there are then N + 1 such polynomials.

If we write
N

Zo (— 1yxsn*z 3

r=

F(sn?z) =

then it can be shown that the x, satisfy relations of the
form

arx,_1+(b,—/\)x,+c,x,+1=0 (r:()’"-,N) (4)

with x_; = x5, = 0. Hence each A is an eigenvalue
of the matrix 4 given by

bo Co
a b ¢
A= a, b2 Cy (5)

and the x, are proportional to the elements of the corre-
sponding eigenvector. For the polynomial of type 1
the elements of A are given by

a,=— (2N —2r +2) 2N +2r — DK,
b,=4r(1 + k), ¢, = 2r +2)2r +1). (6)

Since a,c,_, is negative the eigenvalues of A cannot be
found by the Sturm sequence method, Givens (1953).
However, if we write

N
F(sn?z) = Y y,cn¥z, @)
r=0

it can be shown that the eigenvalues A of A are also
those of the matrix B defined by

by ¢
ai b ¢
B= a, by ¢ , ®
l ..... e J
where

a,= — (2N — 2r +2) 2N + 2r — k2,
b, = 2NQ2N + 1)k? — 4r2(k* — k’?),
6 =—Qr+2)Qr+Dk? k?=1—k2 ®

Since a,c,_, is positive the eigenvalues of B can be
found using the Sturm sequence property, and it is
well known that this method gives very accurate results.

2. Ill-condition of A matrices

To find the x, we have only to find the eigenvectors of
A using the accurate eigenvalues determined from B.
In normal circumstances the method of inverse iteration
(Wielandt, 1944) is well suited to such a requirement, but
unfortunately for most of the relevant values of the
parameters the matrices of type 4 have some very ill-
conditioned eigenvalues and eigenvectors.

The severity of the ill-condition of the eigenvalues is
well-illustrated in Table 1. We give first the elements
a,, b,, ¢, of the matrix 4 corresponding to the values
N =12, k2 =0-9 followed by accurate eigenvalues
A@E=1,...,13). We then give accurate eigenvalues of
a matrix 4 which is equal to 4 except that the element
by, which is 760, is replaced by 760 + 10—1.2-16,
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Lamé polynomials

Table 1

ar b" cr

0-0 2:0
—540-0 7-6 12-0
—534-6 30-4 30-0
—522-0 68-4 56-0
—502-2 121-6 90-0
—475-2 190-0 132-0
—441-0 273-6 182-0
—399-6 372-4 240-0
—351-0 486.4 306.0
—295-2 615-6 380-0
—232-2 7600 462-0
—162-0 919-6 552-0
— 84-6 1094-4

14-: A + 10_1 2_16E11, 11

EIGENVALUES OF 4 EIGENVALUES OF 4

22-76771 22 22-76771 22
110-03760 3 110-03760 3
189-70299 1 189-70298 6
261-75802 7 261-75824 8
326-19293 8 326-18811 7
382-99035 4 383.05092 3
432-11679 8 431-65139 7
473-50004 0 476-33090 5
506-94812 2 499-61841 6
531-25251 2 538-87962 6
545-02985 6 { +12-55463 25i
565-16826 7 569-09605 8
592-53478 0 592-03838 2

(The matrix was read in with a scale factor of 10 to
avoid rounding errors; the change is therefore 1 in the
least-significant digit of the 30-digit mantissa used on
DEUCE.) It will be seen that some of the eigenvalues
of A differ very substantially from those of 4. That
the corresponding eigenvectors are also sensitive to
small changes in the elements a,, b,, c, is evident from
the relations (4).

Now error analysis of inverse iteration shows that
working in floating-point with ¢ ‘digits in the mantissa
each computed eigenvector x() of A4 is an exact eigen-
vector of 4 + E;, where ||E;||, is of order n'/2~!||A4]|,
(Wilkinson, 1963). In view of this it is scarcely to be
expected that single-precision arithmetic will give eigen-
vectors of acceptable accuracy. Further, the results in
Table 1 show that if rounding errors are made in con-
verting the elements a,, b,, ¢, to the binary scale (as
indeed is inevitable unless a scale factor is incorporated
in A, since some of the a,, b, and c, are non-terminating
binary numbers for required values of k) then the matrix
A stored in the computer may well have very different
eigenvalues from those of 4, in which case relations (4)
show that the eigenvectors will also differ substantially.

From now on we shall use the bar in a rather general
way to denote an approximate quantity, not necessarily
the same one each time. Each use of the bar will be
accompanied by a local definition of its precise meaning.

3. Calculation of accurate eigenvectors of 4

Normally when a matrix is as ill-conditioned as this,
high-precision arithmetic is essential for the deter-
mination of an accurate eigensystem. In this case,
however, the form of the elements a,, b, and ¢, makes
it possible to calculate accurate eigenvectors in a very
economical manner. A remarkable feature of the
method is that accurate eigenvectors of 4 can be found
even using an A of the type discussed at the end of

Section 2, in spite of the fact that 4 does not possess
the eigenvectors we wish to determine!

Before describing the method we examine some of
the properties of 4 and its eigensystem. First the eigen-
values of A4 are real since they are also eigenvalues of
the quasi-symmetric matrix B. The quantities a;, b;, c;
are such that

a; <0,b;>0,c; >0, (10)

and from these conditions and the monotonicity of the b;
it can be shown that

by < A < by. 1n)
Now if A is an exact eigenvalue the corresponding x;
satisfy the equations

(bo — N)xo + cox; =0
aix,-_l-{-(bi— )\)x,-—{—cix,-_H:O (i:1,...,N—1) (12)
ayxy-1+ by — Dxy =0 .
Only N of these equations are needed to determine the
ratios of the x;; the x; thus determined automatically
satisfy the remaining equation. In the numerical cal-
culation we propose to omit the equation containing the

b, for which |b; — A| takes its minimum value. Since
the b are monotonic increasing we have

by — A <O0(i<s), by — A >0 (i > 9). (13)

We take xo, =1 and determine xi, xj,..., x; from
equations 1 to s of the set (12) and then take xy = 1
and determine Xxy_;, Xy_3, ..., X; from equations
N +1tos+ 2. We have

x; = — (b — /ey )
Xip1 ={—ax;.y — (b; — Nx;}/c;

i=1...,5s—1

1= (by — N/(— ay) . 4
xi—1 = (b; — Ax; + Ci";+1/(— a;)
i=N-—1,..

.,s+1‘
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Lamé polynomials

From relations (10) and (13) it is obvious that all x;
and x; are positive. The sequence

conkxy (k= x/x)  (15)

gives the required eigenvector of 4. It can subsequently
be normalized if this is required.

Obviously if A is exact and the computation is per-
formed exactly we obtain an exact eigenvector of A.
We assert that if A is a correctly rounded eigenvalue of 4
and the above process is performed in floating-point
arithmetic using A, then the computed vector will be an
accurate eigenvector of A. This will be true even if we
use rounded values a;, b;, ¢, in spite of the fact that the
eigenvectors of A4 are not close to those of 4. The only
requirement is that A should be a correctly rounded
eigenvalue of A itself and not of 4. Since A can be
found from B which is well-conditioned this requirement
presents no difficulty.

Xgs X1s + « o Xs» kX511,

4. “‘Stability’’ of determination of the eigenvectors

We now consider the computation of an eigenvector
using floating-point arithmetic with a #-digit mantissa.

The error bounds we shall obtain are not very sensitive
to the particular rounding procedure that is used. For
definiteness we shall assume that if a and b are standard
floating-point numbers then
fila £ b) = a(l + &) + b(1 + &)
fila X b) = ab(1 +&3) (l&;| <279, (16)
fil@ — b) = a(l + &4)/b
where fl(a + b), for example, means the result of adding
a and b using floating-point arithmetic (see, for example,
Wilkinson, 1963). i
We shall describe A as being a neighbouring matrix
of the tri-diagonal matrix A if we have
a; = a1 +p)
by =b1 +q) (pil,lail, Iri] <279 . a7
¢ =c(l +r)
We let x; and x; denote the exact qliantities corre-
sponding to equations (14) using an exact eigenvalue A
of 4, while X; and X; denote the computed values
obtained using floating-point arithmetic and 4;, b;, ¢;
and X. For definiteness we assume that d;, b;, ¢;, A are

correctly rounded values so that dg;, b;, ¢; satisfy relations
(17) and

A=XM1+s) (s <279 (18)

Our object is to show that %;/x; and X;/x; are both
very close to unity, and therefore that the computed
vector is very close to the true eigenvector of 4. We
write

Eifxi =14 o, Xi/x;=1+p; 19)
and we require bounds for «; and B;. For X;, we have
%o = A[{— di%;y — (b; — NX;}/é1), (20)
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where this notation implies that the expression in square
brackets is computed using floating-point arithmetic
with the previously computed values of X;_; and X;.

Now in the numerator of (20) both —d4;%;_; and
—(b; — N)x; are positive from our definition of s, so
that no cancellation takes place when the quantity in
square brackets is computed. We write

id: — X = (b; — DA + ) @1

and obtain bounds for y; later. Repeated application

of relations (16) then shows that
—ax;_ (1 +v) — (b; — Nx;(1 + w)

Xiy1= c; ’ (22)
where
A4 o)1 =279 <1 +v)
< (I 4+ a1 + 2793, (23)

A+ o)1+ y)d =279 < (1 +w)
<A+ )1+ )1 +279% (24
Since we have
—a;x;_y — (b; — Nx;

Xit1 = S (25)

and —a;x;_, and —(b; — XA)x; are positive, equations
(22) and (25) imply that «; . lies between v; and w;.

In order to obtain bounds for «;,, we require a
bound for y;. We have

fi(h; — ) = b(1 + &) — M1+ &)(|&], |ea] <279
= b1 + ) — A1 + ), (26)

where (1 —2"02< 1+ <1+27% (k=12).
27
Hence
bimy — A
A+ y) =1+ "= (28)
b, — A
giving
A+ b;
lyil < %(2.2“‘ + 272, 29)
Our method of choosing s ensures that
A > 3(bs—y + by
From this it follows that
A+b, 252 —2s+1+4272 )
A—h Saw—ayi—z2 /&) GO

since (A + b;)/(A — b;) decreases as A increases.

Hence we have
2— (14270260 < (L+y) <(1+279%¢0. (D)

From (23), (24) and (31) it is easy to show by induction
that

2 — (1 + 2—r)g(s,i) < x‘_/xi <@+ 2—:)3(:,:') (32)
i—1
where gs,H)=50—1)+2 Eo.f(S,j)-
j=
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Lamé polynomials

Table 2

N =12, k? = 0-9, A = 592-5347R0.

Calculation of eigenvector using nine significant decimals

FORWARD SEQUENCE

o = (1-00000 000)10°
(2-96267 390)10?
(1-44864 250)10*
(2-76723 593)10°
(2-72504 238)106
(1-58031 980)107
(5-80020 983)107
(1-39934 598)108
(
(

>

1
2

w

2-24925 460)108
238527 641)108

L | 1 1

R R R e R e e U ekl
O 0 N O W A

BACKWARD SEQUENCE

%, = (1-00000 000)10° (4-
%, = (5-93221 300)10° (1
%o = (1-53840 775)10! (6-
%5 = (2-28982 788)10! (1-

NORMALIZED EIGENVECTOR

19238 624)10—°
-24206 733)10~
07326 888)10~5
16013 218)10—3
(1-14244 302)10-2
(6-62531 102)10-2
(2-43167 199)10~!
(5-86659 883)10!
(9-42974 404)10~!
(1-00000 000)10°

(6-71844 275)10~!
(2-59068 075)10~!
(4-36714 045)10 2
(4-36714 045)10~2

The tables computed by Arscott and Khabaza covered
values of N up to 30 and obviously the maximum value
of g(s, i) is attained where s= N and i=N—1. It
is easy to show that

s—1
2 fls, i) ~ slog 4s (33
i=0
and we certainly have the overall bound
2= (1427090 < %yfx; < (1+270%0.  (34)

On a computer with 7= 30 we can therefore be
certain that %; agrees with x; to at least six significant
figures, the accuracy required for the tables. The
analysis we have just given can be sharpened con-
siderably, but only at the expense of rather undesirable
complexity. In practice the statistical distribution of
errors alone is likely to ensure that X;/x; satisfies some
such relation as

2—(1 42790 < x/x; < (1 +279%.
Similar arguments apply to the X;.

An interesting feature of this result is that it shows
that if some elements of x; are much smaller than others,
the former will have much smaller absolute errors since
our method ensures small relative errors.

In Table 2 we give the computed vector of the
matrix 4 with N =12, k2 =0-9 corresponding to
X = 592-534780, which is a correctly rounded eigen-
value. The corresponding value of s is nine so that
%o, - - -, Xg are determined from the first nine equations
and %,,, ..., Xo from the last three. The computation
was performed retaining nine significant figures at each
stage. The maximum error in any component of the
normalized eigenvector is 3 in the ninth figure, so that
the error is well below the upper bound given above.

(35)
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5. Eigenvectors of neighbouring matrices

The result of the previous section shows that we can
obtain an accurate eigenvector of A4 while using an 4
for the calculations. By exactly the same argument we
can show that if 4 is any other neighbouring matrix we
can find its eigenvectors by using 4 provided the value A
which we use is a close approximation to an eigenvalue
of 4. From this we see immediately that if 4, and A,
are two neighbouring matrices of 4 and if 4, has an
eigenvalue which is very close to an eigenvalue of A,
then the corresponding eigenvectors of 4, and 4, are
also very close, notwithstanding the extreme sensitivity
of the eigenvalues and eigenvectors of 4 to small changes
ina,b,,c,.

When preparing their tables of Lamé polynomials,
Arscott and Khabaza checked that the computed ele-
ments ¥; satisfied the unused equation of the set (12) to
within a very small error. It is interesting to observe
that this provides a very weak overall check, though it
does give some guarantee that the computer has worked
correctly. This point is illustrated in Table 3. There
we have taken the value XA = 592-0 and have derived a
vector % for the case N = 12, k2 = 0-9 by the process
described in Section 3. Now this A is not close to any
eigenvalue of A4, though it certainly is an exact eigenvalue
of an infinity of neighbouring matrices. The computed
vector is therefore in no sense an eigenvector of A4, yet
the check appears to work extremely well. The com-
puted vector is of course an accurate eigenvector of any
perturbed matrix 4 which has an eigenvalue close to A.
The residual corresponding to the computer vector is as
small as that corresponding to the true eigenvalue and
eigenvector of Table 2. This is not surprising since
592-0 is certainly the exact eigenvalue of an A that can
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Lamé polynomials

Table 3
N=12, k2 =0-9, 3 = 592-0. Calculation of x using nine significant decimals

FORWARD SEQUENCE

%o = (1-00000 000)10°
%, = (2-96000 000)102
%, = (1-44602 000)10* -
%3 = (2-75969 664)105
%4 = (2:71510 608)106
%5 = (1-57308 652)107
%o = (5-76820 168)107
%, = (1-39028 932)108
%5 = (2-23252 031)108
%o = (2-36518 201)108

RARA Rl
o

CHECK agfg + (bg hn X)XQ + Cg.ilo ==

BACKWARD SEQUENCE
1, = (1-00000 000)10° (4-22800 442)10—°
11 = (5-93853 428)10° (1-25148 931)10—¢
o = (1-54164 434)10! (611377 896)10 3
5 = (2-29697 043)10! (1-16680 096)10—3

— 278642402 + 278-642400.

NORMALIZED X

(1-14794 805)10~2
(6-65101 676)10~2
(2-43879 822)10-!
(5-87814 939)10 !
(9-43910 575)10~!
(1-00000 000)10°

(671164 208)10~!
(2-58537 690)10 !
(4-35356 062)10 2

be derived from A by altering b,y by a quantity of the
order of 10—1.2-1!6 and the residual obtained from
such an A is scarcely different from that obtained from
A itself. If we use any value of A between, say, 592-0
and 593-0 the ‘“check” gives an equally satisfactory
result! For larger values of N the check becomes even
weaker.
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Book Review

Elements of Numerical Analysis, by Peter Henrici, 1965;
328 pages. (London and New York: John Wiley and
Sons Ltd., 60s.)

Among the many books on numerical analysis which have

been published in the last few years this volume is outstanding.

Professor Henrici has developed the subject as a mathematical

discipline, emphasising the fact that the roots of numerical

analysis lie in the field of mathematical analysis, and that
numerical analysis is a science and not an art. This book is
not a collection of recipes, and potential users requiring this
type of approach to the subject will have to look elsewhere.

Rather, it is a book for mathematicians and is suitable for a

first course in numerical analysis for such students. Among

topics which hitherto have not appeared in a book of this

type are Romberg integration and, particularly valuable, a

nicely written introduction to the theory of error propagation.

It is also a relief to open a book on numerical analysis
which does not devote an unnecessarily large amount of

2717

attention to the theory of finite differences. One topic which
has been omitted completely is numerical methods in algebra
and matrix theory, but several well written books on this
topic are currently available. For most people, a thorough
understanding of any branch of mathematics is only obtained
after a large number of examples have been worked out.
The present volume is excellent in this respect since it has
over 300 examples of varying degrees of difficulty, together
with a small number of research problems.

The book is divided into three parts: Part one deals with
the solution of equations, including simple iteration methods,
Bernoulli’s method and the Quotient Difference Algorithm.
The second part deals with interpolation and approximation
and ends with a discussion of numerical solutions of differential
equations. The final part is quite short, containing chapters
on number systems and error propagation.

The book can be recommended for an introductory course
on numerical analysis. M. H. ROGERS
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