Chebyshev series

algorithm for summing the Chebyshev series
bpi2 =bpy =0

b,=2xb,,y — b, ;+a, r=nn—1...0

©))
¥ T, = 4(bo — by
gives a bound
bol < lao| + 2|ay| + ...+ (n+ Dla,|, (6)
while that for the power series
81 =0

& =Xgrv1+ /o r=nn—1...0

) ™)
r§0f rxr = 8o

gives
ol < Ifol + 1Al + - .. + 1/l ®
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The work of rearrangement is slight, and may be
performed either by hand or by a simple computer
program; the conversion matrix is readily obtainable
from the explicit formulae for the Chebyshev poly-
nomials. On a computer with a fast multiplier the
algorithm (7) may run considerably faster than (5)—on
KDF 9 the ratio is approximately two to one; and for
such a machine the slight labour of rearrangement may
be well worth while when evaluating a function whose
coefficients are known in advance. When the Cheby-
shev coefficients are formed during the program itself
there is frequently no guarantee that they will be suitable
for rearrangement, and hence direct summation by (5)
is the safer technique.
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Note on the matrix equation Ax = ABx

By Henry E. Fettis*

The equation
Ax = ABx ¢}

is normally solved by reducing it to an equation of the type
Cy =Xl 2

for which many standard methods are available. We are
concerned here with the case where 4 and B are both sym-
metric and B is positive definite.

The most obvious device for reducing equation (1) to
equation (2) is to premultiply by B—1, thus arriving at the
conventional form with C = B—14. This procedure has the
disadvantage that it destroys symmetry, and thus excludes
methods which deperd on this property of C (e.g., the
Jacobi method).

A second method consists of first reducing B to diagonal
form by finding an orthogonal matrix T such that

TBT = D 3)

where D is diagonal. (7 may, for example, be determined
by the Jacobi method.) Since B is positive definite, D~1/2 is
real and finite. We may then rewrite (1) as

Cy =My @

where -

C = D~ 12141 D112

x = TD~ 112y, ' (®)
Since C is still symmetric, equation (4) may be handled by
standard methods as before. The amount of work is seen to
be somewhat greater than that required for two equations of
type (2).

A third method which retains the symmetry of the original
equation and involves fewer operations is the following:

(1) By elementary row operations on B, find an upper-
triangular matrix S such that SB is lower-triangular. To
find S, it is only necessary to perform Gaussian elimination
on B, while simultaneously performing the same row opera-
tions on the unit matrix.

(2) Since S is lower-triangular, SBS is also; and since SBS
is symmetric SBS must be a diagonal matrix, say D. Equation
(1) is thus reduced to

SASZ = ADZ
from which equation (4) follows as in the second method.

The number of operations required to arrive at the desired
form is clearly much less than for either of the first two
methods. It is noted that S4 may be computed concurrently
with S by performing on A the same row operations as were
performed on B.
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