A stable explicit method for the finite-difference solution
of a fourth-order parabolic partial differential equation

By D. J. Evans*

Adaptation of the Du Fort-Frankel explicit scheme to a fourth order linear parabolic equation

is shown to possess unrestricted stability for any choice of mesh spacings.

Convergence and

compatibility considerations are discussed and the theoretical results confirmed by numerical
experiments for a chosen model problem.

1. Introduction
The non-dimensional equation

Aty
— =0 0<x<
dxt + btz *

,t>0 (la)
subject to the prescribed initial conditions
¥(x, 0) = go(x)

for0< x <1, 15
and L0 =g [ (o)

and with boundary conditions at x =0 and 1 of the
form

Y0, 1) = fi(0),
d2
=30,1) = po(0),

y(1, 1) = fi(®), and

230,0 = i@, (10)

occurs in the study of the transverse vibrations of a
uniform flexible beam of unit length hinged at both
ends. Here, y represents the transverse displacement
of the beam and x and ¢ the distance and time variables,
respectively.

To obtain numerical solutions of (1), the usual pro-
cedure is to cover the specified domain by a rectangular
network with spacing Ax and Atr, and to replace the
differential equation by a finite-difference approximation
which is to be evaluated at each point of the mesh.
Both explicit and implicit methods have been success-
fully proposed by Collatz (1951), Crandall (1954), Conte
and Royster (1956), Conte (1957), and Albrecht (1957).

The explicit method given by Collatz possesses great
simplicity but has the disadvantage that the mesh ratio
At/(Ax)> must be less than or equal to } to ensure
stability against growth of round-off error. This results
in a very large number of time steps that need to be
computed for even the most modest problem. The
formula given by Albrecht is explicit and overcomes the
stability problem but uses the values of the solution on
four lines to compute the solution on a fifth line, which
is slightly disadvantageous. On the other hand, the
implicit methods have superior stability properties but
suffer from the disadvantage that they involve the solu-

tion of a system of linear equations at each time step.
Although each equation of this system involves only
5 or 3 unknowns, the application of these methods in
general requires more work than the explicit methods.

The purpose of this paper is to introduce an alter-
native explicit method for the solution of (1) derived
from the Du Fort-Frankel approach to second-order
parabolic equations (Du Fort and Frankel, 1953) which
possesses unrestricted stability whilst preserving the
ease and simplicity which one associates with explicit
methods.

2. A new finite difference scheme
By the introduction of two additional variables @

“and ¥ defined by the following equations

dy A%y
hEAENY )} — = 2
ot and dx2 2)

then we can rewrite equation (1) as two simultaneous
partial differential equations of the form

W — Y

w2 (%)

W 2D

2" 3b
and ot dx? (36)

after Richtmyer (1957).

The ® and ¥ domains are covered by rectangular
networks with spacing Ax and A¢, and we distinguish
the discrete variables ¢(iAx, jAtr) and Y(iAx, jAt) at the
point (i, j) on each network from the continuous functions
®(x, ¢) and ¥(x, ¢) specified by equations (3).

Now, if ® and ¥ are functions defined as in (2), then
they certainly satisfy (3a@) and (3b) if y satisfies (1).
Also, it can be noticed that the differential equations (3)
are invariant under the transformation —x for x. We
shall use this fact for various edge conditions. We
shall use the given initial and boundary conditions in (1),
to derive the initial values on the i network in the
following manner From the initial condition y(x, 0)

given by (1b) (or ) is calculated. Also since Lo

ot
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Fourth-order parabolic equation

%4

(or ¢) is prescribed in (1b), values of —~ are similarly

dx?
obtained and immediately from (3b), values of b_g/: are
known on the line # = 0 which together with the previous
knowledge of  on ¢ = 0 is sufficient for us to determine
the ¢ values on the second line f = A¢. Similarly, on
the ¢ network, values of ¢ are known on line ¢t =0

for g_)t) (or ¢) is prescribed initially by (15) and, from a

2
knowledge of i, 27‘#

> is obtained which by (3a) gives

the values of %‘f on line t = 0. Hence, values of ¢ can

be obtained on both lines t = 0 and ¢t = At.
Finally, since i is specified at x = 0 and 1 for ¢t > 0,

and from (3a) % is specified there also, it follows
immediately that ¢ and i are specified along x = 0 and
1 for > 0. Hence the values of ¢ and ¢ for the first
two lines # = 0 and 1 = At of our networks and at x = 0
and 1 for all # > O can be obtained from equations (1)
and (lc); we are now concerned with the problem of
proceeding with our solution for increasing ¢ within the
domain 0 < x < 1.

We now apply directly the Du Fort-Frankel scheme
to the ¢ and ¢ networks simultaneously. This scheme
is based on the four-point stencil on each network as
indicated in Fig. 1 and involves the use of the central-
difference expression

[b(x, t + Ar) — d(x, t — AD](2AN) !

to replace the left-hand side of equation (3a). The
second derivative with respect to x is replaced by the
approximate expression

[$(x + Ax, 1) — (x, t + At) — P(x, t — Ar)
+ $(x — Ax, D](Ax?)

with similar approximations for equation (3b).
If we let ¢,; =¢(iAx, jAt), the finite-difference

equations at the point (7, j) on each mesh can be repre-
sented as follows:

[¢i,j+1 —— ¢i,j—l]

2k

— [¢i+l,j + ‘//i~ l,j}; ‘l’i,j—l _ l)[’i,j-+—l:| (4(1)
and
[ijrr — i1l

2k

— [¢i+1,j + ¢i— 1,/ }72 <}si,j—l — ¢i,j+1] (4b)

where h = Ax and k = At
These equations can further be simplified by solving
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DONET NET
+ Tiea - — Tyu
L -1 B Ty
xHxl xlﬂ xl-uxl Xie1
Fig. 1

for the two unknown quantities i, ;,; and ¢;;,, in
(4a) and (4b) and rearranging to give the final result

bijrr=ai; 1 —bQ2¢i i1 — bis1, — bi—r,)

+ C(‘/’i-u,j + ‘ﬁi—l,j) (5a)
and

¢i,j+1 = a¢i,j-l - b(‘/’i+1,j + '7bi—1,j - 2‘/’i,j~|)
+ (i Lt ¢i—1,j) (5b)

where
1 — &2 a a2 2k
a=1+a2, =1+a2,c=1+a2anda=P. (5¢)

Thus, the equations (5a) and (5b) are now explicit in
form and provide a single ¢ and ¢ value in the (j + 1)th
row when the ¢ and ¢ values are known on the jth and
(j — Dth rows. Thus the solution can be obtained by
an extremely simple repetitive computation performed
from the operational stencils illustrated in Fig. 2.

3. Stability of the proposed scheme

To discuss the stability considerations of equations (5),
we denote by 0, the vector of pivotal values along the
line jA¢ for both ¢ and ¢ values. Then,

vj b,
0, = where u; ﬁz, j ©
37

PYN_1, j

and v; is similarly defined for ¢, ; withi =1,2,... N—1
and NAx = 1. The equations (5) can now be expressed
in the matrix form
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Fourth-order parabolic equation

where
o c 0 : o —b 0]
! . .
c I —b
I .
c : —b
| .
0 c 0 : 0 —b o
___________ | m—mm—mmm
o b 0 : o c 0
. . !
b I ¢
I
b : c
. |
| 0 b 0 : 0 c o_|
cT : —bT
o S e ®
bT | T
and K =
[~ a 0 : 2b 0]
I
]
|
l .

0 a | 0 2b
____________ ‘ —— e o —— —— — — —— - —
—2b 0 : a 0

I
I
!
. |
_ 0 -2 | 0 a_
al : 2bI
= |-——— | ———— )
—2bI | al

I is the unit matrix of order N —1 and T is the
(N —1) X (N — 1) matrix.

© 0 1 07
1
T = (10)
1
0 1 0]

It can easily be noticed that both H and K are
(N — 1) X (N — 1) block skew symmetric matrices of
order 2(N — 1). '

We can reduce the two-level formula (7) by combining
0;_, and 0; into a single vector w;, so that

w

J+1 = MWJ

(11
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PNET

TJ'H + TJ""
o _T ﬂLTJ
—+ T ﬁ+ -
xl-lxlx|+| x""xl xlﬂ
Tt
- +
~ Fig. 2
where

H K 0;
M [I O:Iandw]|:.9j_1 :' (12)
Since M is unsymmetric, we assume that it possesses
4(N — 1) distinct eigenvalues A,, and hence the nor-
malized eigenvectors z” of M form a complete set.
Then we can write w, as a linear combination of these
eigenvectors in the form

. 4N—4
Wo = ? Bz (13)
4N—4 )
and Wiy = Mf“wo = 3 Br}\{-+lz(r) (14)
1

where B,, (r =1, 2, 3,...4 N — 4) are chosen constants

given by the relationship
Br = (WO, Z,). (14b)

The stability analysis of the finite-difference scheme
represented by equation (7) has been discussed adequately
by Lowan (1957). A brief outline of this will now be
given.

Initially the matrices H and K can be verified to be
commutative; hence they possess simultaneous eigen-
vectors. From (7) we can obtain the results
02 - H 01 + Keo
03 = H(H01 ‘l“ KBO) + Kgl
04 = (H3 + 2HK)01 + (HZ + K)KO().

By continuation of this sequence the following result
0,1 = Qi(H, K)o, + Q;_(H, K)K0, (15)

is obtained where

0,.(H,K) = Hm + (’"1— I)H'"—ZK

and
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Fourth-order parabolic equation

+ (M D) Hm e+ (m; PYHm-2K> (16)

and (m) denotes the binomial coefficient ———.
r ri(m —r)!

am
Now let us denote by 67, the true accurate solution of

the finite-difference equation (15). Assuming no round-
off error to be present in the calculation, then

61 = Q0% + 0, KB} (18)

Then, denoting the error vector €;,; = ;. — 07, as
the difference between the numerical solution of (15)
and the true accurate solution of (15), we can write

€1 = Qje + Q;—1Keo. 19

Expanding €, and ¢, in terms of the normalized eigen-
vectors 1, (r =1,2,3,...2N — 2) of H and K we have
AN-1)
am,and e = X B,7,
r=1

2(N-1)

€= X

r=1

(20)

where the «, and B, are chosen constants given by the
relationships «, = (e, 3,) and 8, = (€, ,). Further, if
we denote by v, and p,(r=1,2,3,...2N — 2) the
eigenvalues of H and K, then it follows that we can write
2(N-1)

> “er— I(Yr, F’r)l""rnr'

r=1
@n

2(N—-1

€11 = r§1 Ber(')’ra I"‘r)nr +

Clearing terms, we have the expression
2(N—-2)

N
€r1 = El Br{'}’r’ + (] 1 ))’3 2,

+ (j ; 2)7!"“#3 +.. -}nr

2(N—-1)

A R ) ™

+ (j 5 3)7'1‘5#3 + - -}#mr- 22

By the introduction of the quantities A;, , and A,,,
defined as

Yr= )‘l,r + A2,r } (23)

and Hr = — Al,rA2,r

where A, and A, , are the roots of the quadratic
equation

A2 — '}’rA — K= 09 (24)
derived from (7), then equation (22) simplifies to the
expression

2(N—-1) )\{-i-'l _ Aé-*;l
€ = 3 R 2T 4y,
+ r=1 B{Al,r_ )‘Z,r}n

N-D (N M
s a,{“'—i}m. 25)

r=1 Al,r_AZ,r

283

In order for the proposed finite-difference scheme to
be stable, it is necessary and sufficient for the norm of
¢; i.e., ||¢]| to remain bounded as j— co. If the roots
of the quadratic equation (24) are real, then from (25)
it is evident that for the term (A{%! — MEY/(A;,, — A3, )
to remain bounded the roots must be numerically
smaller than unity. However, in general, the roots of
(24) are complex, and if we denote them by A, and
Ae~ then the term (AF! — AAD/(A,,, — Ay,,) is
Ml sin jw,/sin w,, and the necessary and sufficient con-
dition for the term to remain bounded is that |A] < 1.
Hence, the condition which is both necessary and suffi-
cient for the stability of equation (7) is that the eigen-
values of (7) be numerically smaller than unity if real,
or have modulus not greater than unity, if complex.

The eigenvalues A, of M are given by the determinantal
equation

|M — M| =0 (26)
which in partitioned matrix form is
H— M K ~
= 0. 27
I —AK @7
Partitioning z( into the form l:p :I,
q
we obtain I:H _I Al —fl] I:g ] - [g] (28)
from which it follows that p = Ag 29)
and [IA2 — HXA — K]p = 0. (30)

Further partitioning of p into the form B] and using
the simpler representations of H and K, we obtain

e o ) [)- )
(€]

Elimination of s is now possible owing to the com-
mutativity of the sub-matrices involved, and we finally
get the equation

[(A2 — @) — AcT + ib(AT — 21)]
[(A2 — a)] — AcT — ib(AT — 2D)]t =0 (32)
which simplifies to :
[(A2 —a F i2b)] + (—Ac £+ bN)T]t =0.  (33)
It follows that ¢ must be an eigenvector of 7" whose
eigenvalues are known to be of the form —2 cos (%T),

k=12...N—1
equation

Using this result, we get the

(A2 —a F 2ib)t + (—Ac + ib)\)(—2 cos kwﬂ)t =0.
(34)
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Fourth-order parabolic equation

Equating the coefficient of ¢ to zero, since ¢ = 0, gives

the quadratic equation

( + oM + 2a(a T i) cos k_]:;)\ S — o+ 20)=0
(3%5)

on substitution of the values of a, b, and ¢ from (5¢) for
the eigenvalues A of the matrix M.

In general, the roots of this quadratic equation (35)
are complex and a little analysis shows that

=[5 (2] e

for all k.

Hence, it follows immediately that the eigenvalues of
M are equal in modulus to unity, and the proposed
explicit scheme is stable for all values of the mesh sizes.

4. Discretization error of the solution

It is now necessary to investigate the criteria for which
solutions of the finite difference-equations (5) converge
to the solution of the continuous partial differential
equation (1) as the mesh sizes Ax and At tend to zero.

We now consider the expressions

(q)i,j+l - (I)i,j— l)

2k
+(‘Fi+l,j +¥i o, — Vi1 — Vi ) +R =0
h2
(37a)
and
i1 —¥i-0)
2k
o ((I)H-l,j + (Di-l,j _ (Di,j—l _ (Di,_H—l) + R, =0
h2

(37b)

where @, ; and V', ; represent the solutions of (3), and
R|, R, represent the local truncation errors. The terms
R, and R, may be estimated by means of Taylor series
expansions of ®@; ; and ¥, ; in the vicinity of the point
(i, j) of the network, i.e.,

k230 h2[3*W k?[d?
Ry =22 Ssml - nlse
6 [3t3]i,j * 12[bx4:l,-,,- hz[ D’\E'Ji’i

K [o4W
_ Kk otY . (38
12h2[ az4],.,,+ (384)
and
JRIrEY B[40 k2220
Ry=— |22 | =112 =l ==
2 6[3:3],.,,. 12[ax4],-,,-+h2[bt2]i,,
k* 240
+W[a_t4],-,,-+'“ (38b)

Immediately, it can be seen that the local truncation

284

2
errors are of O(h2 + k2 + I;—z) for the proposed scheme,

which compares favourably with the alternative finite-
difference schemes mentioned in Section 1. Now it is
evident that the finite-difference schemes (37) are com-
patible with the differential equations (3) only if the
local truncation errors R, and R, — 0 as A and k — 0.
By further inspection of equation (38) it is clearly seen
that this is true only provided k goes to zero faster than A.
If k and 4 tend to zero at the same rate, then denoting
k/h = c, the finite-difference equations (37) will represent
the solutions of the simultaneous partial differential
equations

W —Y | ,02W
e T 0
2 2
and o L% (39b)
ot Ax2 12

which is the hyperbolic partial differential equation
2 4 4 4
b_y_|_b_y_|_c4y_2z 2%y

— 40
2 dx* o4 Ax2d1? (40)

in the original notation of (1).

Hence, for the equations (37) to be compatible with
the differential equation it is necessary that as 4 and
k — 0, kK must go to zero faster than A.

The discretization errors of the finite-difference
equations (4) are defined as the differences between the
solution ® and ¥ of (3) and the solutions ¢ and
given by (4). If we denote by

e =¢—@ (41a)
fus=4—¥, (416)

subtracting equations (37) from (4), we see that the
discretization errors e; ; and f; ; satisfy the equations

and

—€j_1)

2k
+ (fi+1,j +fi—1,j —"]};;‘ij—l —fi,j+1) = Rl (42a)

(ei,j+l

(fijr1—fii-1)
2k
_ (€ir1,; T €im1,) — €,j—1

h2

These equations can be combined to give finite-difference
equations similar in structure to (5) i.e.,

€ij+1 = 0Q€; ;1 — b2fi -1 — firrj —fi1.)

- ei,j+1) = R2. (42b)

+ cle;r1,; + €i—1,)) + b(h*R; + 2kR,); ; (43a)
Jijr1= afi,j—1— blejr1,; +ei—1,;— 2e; ;- 1)
+ (fivr,; +fio1,) + b(W*Ry — 2kRy);, ;. (43b)

These two equations can now be combined to form the
matrix equation

E'+1 = HEJ +KEJ_1 +g]

J

449
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Fourth-order parabolic equation

where

fi €i,j
Ej = and ej == ez,j , (45)

€j

eN_1,j

and f; is similarly defined;
H and K are defined as in (8) and (9),

§ [(B*Ry +2kRy); ]
where g; = , & =0b| (h*R, + 2kR,),
Xi -

| (W2R, + 2kR)n—1

[(A>Ry — 2kRy); ]
(’R, — 2kR,)2
and x; = b . (46)

| (W?R, — 2kR)n—1 |
It can be noticed that g; is a vector composed of trun-
cation error terms.

Now, initially it is reasonable to assume ® = ¢ and
Y = ¢ for the line j = 0; hence E, = 0.

By a similar analysis to (15), we can derive the
expression

E, = HE, + g,

E; = H(HE,) + KE, + Hg, + g,
= H(H*> + K)E, + KHE, + Kg, + H’g, + Hg, + g3
= (H?® + 2HK)E, + (H* + K)g, + Hg, + g3,

and finally

Ej., = [Hi + (j N I)Hf*K
+ (j’z“z)Hf~4K2 +.. .]E,

+3 {Hf“ - (j—";_l)Hi—‘—ZK

s=1
N (1—2—2) Hi-s—4K? 4 . .}gs (47)

where a similar notation to (15) has been used throughout.
Assuming that we can expand the vectors Ey,gy,8>,...8;
in terms of the simultaneous eigenvectors »,, (r = 1, 2, 3,
., 2N — 2) of H and K, suitably normalized, we have

immediately
2N—1)

E = X

r=1

2(N-1)
oy and gs = gl B’(s).,]r (48)

where the «, and B are chosen constants to be defined
later. If now y,and p,, (r =1,2,...2N — 2) are the
eigenvalues of H and K, equation (47) becomes

2(N-1)

B = 3wy + (1]t

285

+ (] N 2)7;_4V'r + .. -}m +

2E ol (07

R G i R U
This expression can be written in the simplified form
Eo= 3 f;_—fg ,

using the abbreviation of (23).

Now earlier we showed that the roots A, , and A, ,
are complex conjugate and of modulus unity, hence if
we denote

A, =€“ and A,,, = e o (51

then (50) becomes
_ANSD sin (j + Do,

Brov= 2 o,

2IN—-1) j n 1 —

+ 3y poinlUtlzde, (s

r=1 s=1 sin w,

Now the expressions m(s!rl;l)(u, (53)
inw,

and g sin(G+1— 9o, (54)

s=1 sin w,

can be verified to remain bounded as j — oo.
Let T be an upper bound of both

sin (j + Do,
sin w,

Lsin(j+1—sw,
s§l sin w,

and

which on summation can be verified to be the quantity

sin w, — sin jw, + sin (j — Now,
4 sin w, sin? (w,/2)

(35)

We further denote by & and f, the upper bounds of
o, and B, defined by

o, = 2(N )( 1> nr) (56)

and g M) (57

A= 2<N )

Finally, the components of the eigenvectors n,(r = 1, 2,
. 2N — 2) can be verified to be

. 2rm . (N—2rm
—sin o1 (— DNsin W=D’
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Fourth-order parabolic equation

isin I _isin ___2r1r
N—1) N—1y" "
... (—=1)Visin %‘_2_1’)" (8)

An upper bound 7 of the components of the eigenvectors
7, can be obtained if we make use of the following
identity:

o=l  lgm . kqm 0 k=#1
Zsm——sm—z{ . 59
q=1 0 o 012 k=1 (9
Hence, after a little analysis we obtain the result
=2 (60)

By substituting these quantities into equation (52), we
have an upper bound for the discretization error at the
point i on the line j 4 1,

lej,j+1] <4NT(z + B)

with a similar result for f; ;. ;.

If we assume that the components of E; are of the
order of magnitude of (Ax)° where ¢ > 2, then from (56)
we have & = O(2{Ax}°). Also, the components of g
are given to the order of magnitude {(Ax)* + (A%}
where we assume that the compatibility condition is
obeyed and A¢— 0 faster than Ax — 0. Accordingly
we have that f= O(2{(Ax)* + (A#)?}). Thus, when we
substitute & and B in equation (61) and use the result
NAx = 1, the final result is

(61)

where 4 and B are suitable constants, with a similar
result true for f; ;, ;. Equation (61) clearly shows that
e;j+1— 0as Ax and At — 0 provided o > 2.
Therefore, we now conclude this section with the
statement that the solution of the difference equations (5)
tends to the solution of the differential equation (1) for
the conditions stated, whilst the maximum difference
between the two solutions is given by equation (62).

5. Experimental verification

To test the validity of the proposed scheme and the
derived stability and convergence criteria, the problem
of the vibrating beam hinged at both ends was investi-
gated with the following boundary conditions:

2%y 9%y

— = = _7(1 = 0.
0, 1) =550, 1) (1,0 =3501,0=01>
The initial conditions were taken to be

3(x, 0) = 112(2x2—x3—1), 0<x<1

and g—};(x,O)zo 0<x<l
The exact solution to the continuous problem is easily
obtained by Fourier series analysis and is given by the

expression

— 5 ; 2.2
les ;41| < 8TCADX)Y~1 + B(A%)® + BAY)  (62) y(x, 1) s§1 a, sin smx cos s?wt (63)
Table 1
t=0-02
x 0 0-05 0-1 0-15 0-2 0-25 0-3 0-35 0-4 0-45 0-5
Exact solution |0]0-03949|0-07802|0-11462|0-14840 |0-17853 |0-20426 | 0-22496 | 0-24012 | 0-24937 | 0-25248
equation (63)
Proposed 010-03872|0-07676 | 0-11333 | 0-14766 | 0-17873 | 0-20555 | 0-22686 | 0-24141 | 0-24979 | 0-25258
explicit scheme
equation (5)
Table 2
x=05
t 0 0-0387 0-0512 0-0637 0-0762 0-0887 0-1013
Exact solution 0-25748 | 0-23888 | 0-22524 | 0-20817 | 0-18795 | 0-16486. | 0-13927
equation (63)
Proposed explicit scheme | 0-25000 | 0-24869 | 0-22878 | 0-20554 | 0-17832 0-16336 | 0-14421
equation (5)
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Fourth-order parabolic equation

1 x . sample of these comparisons are shown in Table 1 for
where g =2 33 (x —x* — 1) sin (sm)ds t=0-02 and x = 0(0-05) 0-5, and in Table 2 for
x = 0-5 and larger values of z.

- _54_5 (cos (sm) — 1). The §tability criterig of (5) was che:cked experimentally
s> by taking a large variety of mesh sizes Ax and A¢ and
obtaining the solutions on the Sheffield University
Computation of the exact solution at the mesh points Mercury computer. In each case,. no evidence of
with spacings Ax = 0-05, At = 0-00125 from equation numerical instability due to growth of round-off error
(63) correct to five decimal places was obtained and was found.
compared with the results obtained from the finite-
difference equations (5). Both short-time and long-time Acknowledgement
studies of the exact and finite-difference solutions were The author wishes to express his gratitude to Mrs. A.
compared, and agreement to within the derived error Fairburn for expert programming assistance in verifying
bound given by equation (62) was obtained. A typical the theoretical results given in this paper.
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Book Review

Computing Methods (Volumes I and II), by 1. S. Berezin and the authors had never done much actual computation, except
N. P. Zhidkov, 1965; 464 and 679 pages. (Oxford: perhaps a few academic exercises, and this was reinforced by
Pergamon Press Ltd., 100s. per volume.) particular points of detail. Thus the account of the Euler-

This enormous work—1143 pages in all—attempts to cover Maclaurin fgrm}xla relating an integral to a series does not say

the whole field of what we would call numerical analysis. that the series is asymptotic, not convergent; and the brief

The first volume has six chapters, on approximate quantities note on page 294 on calculation of integrals with a variable

and errors, interpolation, numerical integration and differenti- upper limit suggests that they have never heard of the neat

ation, general analytic methods of approximation to functions, and efficient me{hods due I think to Comrie and given years

least squares approximation: the second, on linear algebraic ago in Interpolation and Allied Tables. o

equations, non-linear algebraic equations and transcendental There is of course a great deal of information in the book,

equations, eigenvalues and vectors of matrices, ordinary especially in the chapters on approximation; but for a work

differential equations, partial differential equations, and published in 1965 the omissions are unforgiveable. On
integral equations. I found it all very laborious and unin- quadrature and ordinary differential equations there is no
spiring and I could not detect anything new in either the mention of the modern European school—Dabhlquist, Henrici,
methods or the results. On the contrary, the treatment has a Rutishauser, Stlefel.; on matrix calculations, Wilkinson’s
very old-fashioned air, with pages of heavy algebra, extensive name appears only in a 1948 reference, and the methods of
displays of formulae—for example, for numerical integration Jacobi, G}vens and Hpuseholder for elgenvalue: calculations are
and differentiation—which could have been put into appen- not mentioned; nor is the work of Young, Richtmyer, Varga
dices, or, better, left out altogether, and exhaustive pursuit of on partial differential equations, nor indeed any of the modern
details with no great reward in the end, as in the 40 pages on American writers. The publishers should have given the
the Runge-Kutta method. The contrast with the elegant date qf the original Russrfm edition. The references, mgst
writings of Henrici, for example, is very striking. The point of which are to work published between 1948 and 1954 with

of view is wholly that of the hand computer (there is a bare none later than 1958, suggest that it was written in 1955-56;

mention of electronic machines in the introduction to Volume if that is so, one can understand why the important modern

I, which includes the statement that a modern high-speed work has been missed. It strikes me as yet another warning

computer operates at about 8,000 instructions per second). against trying to write everything down in one great work.

Even so, I got a strong impression all the way through that J. HOWLETT
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