
The Egdon system for the KDF9

By D. Burns, E. N. Hawkins, D. R. Judd and J. L. Venn*

An operating system based on the use of high-level languages and on the use of a discfile for
program storage is described. The use of the discfile and the fact that only a small fraction of
a program has to be recompiled when an error is corrected means that a very quick turnround
is provided to users.

The Egdonj programming and operating system is
designed for a medium to large computer installation in
which a large proportion of time is occupied in program
testing and in which most programs are written in high-
level languages.

It is currently operating on two KDF9 computers each
with the following configuration of equipment:

1 central processor with 32,768 48-bit words of core
store.

8 English Electric-Leo-Marconi tape units.
1 Ampex TM4 (IBM-compatible) tape unit.
1 Data Products discfile (capacity 3 • 9 million words).
1 line printer.
1 card reader.
1 card punch.
1 paper tape reader.
1 paper tape punch.
1 monitor typewriter.

It can, however, be adapted to work with variations
of this configuration.

The system is of a general type which though common
in the U.S., is almost unknown to British manufacturers.
Its main features may be summarized as follows:

1. Its unit of compilation is not the complete program
but the routine.

2. It deals with a mixture of source languages.
3. It makes extensive use of a discfile for program

storage.
4. Although it does not use conventional time-sharing

it buffers input and output by the use of "pseudo-
off-line" card reading, card punching, and printing.

The first of these features, the independent compilation
of routines, is of great value in handling large programs.
Each individual routine is compiled, not to its final
"absolute binary" form but to "relocatable binary"
(RLB), a partially compiled form in which the addresses
of core locations have not yet been filled in and which
can therefore be adapted to be obeyed from any position
in the core store. Before a program is executed, the

t Readers of Thomas Hardy will know that Egdon Heath
corresponds roughly with Winfrith Heath, in Dorset, where the first
KDF9 to use this sysem is installed.

routines which compose it are assembled together and
"relocated," i.e. their absolute addresses are filled in.
The advantage of doing things this way is that if a small
amendment is to be made to a program, only the routine
which is to be amended has to be recompiled from the
source language. The routines which have not changed
are merely "relocated" as usual, which is much quicker
than compilation.

Independent compilation is intimately associated with
card input because if paper tape is the basic input medium,
it is almost essential (because of the difficulty of amending
paper tape) to hold a copy of the program in the system
so that it can be updated regularly. Since it is undesir-
able to hold a program in both source language and
RLB, the RLB is usually omitted and programs are
compiled completely from source language each time
they are executed. With cards no such difficulty exists.
It is a simple matter to amend card packs, so the source
language exists only on cards and the system merely
holds the RLB form of a program. When an amend-
ment is made a complete routine is input afresh from
cards.

With regard to point 2, the mixing of source languages,
these are at the moment EGTRAN (a dialect of FOR-
TRAN II) and KDF9 User-code. ALGOL may be
added later. Any given routine must be written in one
and only one of the source languages, but EGTRAN
routines may be freely interspersed with User-code
routines. Both source languages are compiled to RLB,
which serves as an interface language.

The use of the discfile for program storage as well as
data is a central feature of the system. Not only are
system programs and library subroutines held on the
disc, which has been done before, but also some problem
programs. We believe that in this respect Egdon is
unique amongst conventional operating systems, although
it is of course usual in multi-console systems.

The effect of using the disc, together with a fairly large
core store and single-pass compilers, is to avoid com-
pletely the necessity for batch processing. This is
usually necessary with non-disc systems, to avoid
excessive searching time on magnetic tape. The Egdon
system is a straight-through system, and jobs can be
loaded into the card hopper one after the other, each

* English Electric-Leo-Marconi Computers Ltd., Kidsgrove, Stoke-on-Trent, Staffs.

297

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/8/4/297/400647 by guest on 19 April 2024



Egdon

Pseudo-off-line
input tapes

User tapes Pseudo-off-line
output tapes

Computer
(Director Area)

Computer (main program area) Computer
(Director Area)

Card Reader Disc File Card Punch

Fig. 1—The flow of information through the Egdon system

Printer

with its data with a minimum of operator intervention.
The flow of information through the system is shown in
Fig. 1.

The fourth distinctive feature, "pseudo-off-line" input
and output, speeds input and output up considerably
without affecting the "straight-through" nature of the
system. Cards are read by the supervisory program (the
Director) and the information they contain is copied on
to magnetic tape quite independently of the job which is
actually being run. The card images are read back from
tape when the job they refer to is compiled or executed
in its turn, so that all the information concerned with
jobs that are currently being compiled or executed is
read from magnetic tape, not from physical cards.
Through-put speed is thereby increased, and if a card jam
should occur time is not usually lost because the trans-
scription process, not the running of jobs, is held up.
The converse happens on output, information being
written on tape at the time the job is executed and sub-
sequently read back and printed or punched under
Director control. These facilities are more fully
described below under "Operating features".

The working of the system
The organization of the compilation and assembly of

problem programs is done by a system program called
Job Organizer, which is called into store by the super-
visory program (Director) when work is to begin.

Let us consider first the case in which a card pack con-
sists entirely of routines in source language (EGTRAN

or User-code), together with control cards. The
pack begins with control cards identifying the job and
the segment and serving certain other special functions.
(N.B. A segment is denned as the largest subdivision of a
program held in core store at any one time during
execution.) Job Organizer reads these control cards
(or rather card images from magnetic tape) until it
reaches the control card which immediately precedes the
first routine. This card specifies which of the source
languages the first routine is written in. Job Organizer
then brings down from the disc the appropriate compiler
for that language and transfers control to the compiler.

The compiler then reads the cards or images of the
routine itself, and compiles the routine into RLB which
it stores in the core store. Eventually a card is read
which signifies the end of the routine. Control is then
handed back to Job Organizer, which writes the RLB
to an area of the disc called Job Assembly 1.

Job Organizer then deals with subsequent routines in
the same way, except that if a routine is in the same
language as the preceding routine, the compiler is not
brought down from the disc because it is already in the
core store. . ,

When a complete segment has been compiled, Job
Organizer automatically fetches from the disc all the
library subroutines which are required, and copies them
into the Job Assembly 1 area after the routines supplied
by the user. If there are more segments, these are dealt
with in the same way and stacked, each with its library
subroutines, one after the other in the Job Assembly 1

298

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/8/4/297/400647 by guest on 19 April 2024



Egdon

area. All of these segments and their constituent
routines are in RLB form, i.e. they have not yet been
bound into a single program by having their absolute
addresses filled in.

When the complete program has been written to the
Job Assembly 1 area, Job Organizer calls a system
program called Relocator which brings each segment in
turn back into core store, "relocates" it, and writes it to
another area of the disc called the Job Assembly 2 area.
Each segment is now in absolute binary form ready to be
obeyed. It is from the Job Assembly 2 area of the disc
that segments are brought down during execution.

Assuming that execution is required, the first segment
of the program is now brought down and entered. If
the program uses card data, this will have been fed in on
cards immediately after the program, and so will follow
it immediately on the input tape. If magnetic tapes are
required, details of these will have been given to the
system by means of control cards in the job pack. If
the right tapes have been loaded, the system will find
them and allocate them to the program. If they have
not been loaded, a message stating which tapes are
required will be typed for the operator as soon as the
program tries to use that tape. The program will be
executed until failure occurs, until it terminates normally,
or until it is terminated by the operator.

On termination, Job Organizer is brought down again
and the whole cycle of events is repeated. If the previous
job has failed to read all its data, this is read and ignored
until a beginning-of-job card is found, so jobs may be
loaded into the hopper one after another with no fear
that one will interfere with another.

All cards except data cards are listed as processing
takes place, via the pseudo-off-line output tape. Failure
diagnostics are output in the same way, as of course are
the user's results. There is also a facility for obtaining
RLB versions of routines on punched cards, by preceding
the routine by a special control card.

The above is the simplest pattern of the flow of jobs
through the system. There are, however, variations on
this. For example, routines may be presented to Job
Organizer not in source language form but in the form
of RLB cards. In this case Job Organizer does not, of
course, have to bring down a compiler, but merely copies
the RLB from the cards straight to the Job Assembly 1
area.

Alternatively, the program or part of it may be stored
in the problem program area of the discfile. In this case
a special control card is included in the job pack, and
Job Organizer automatically brings down the program,
which will already be in RLB form. A program segment
may be composed of some routines from the disc and
some from cards. If all the routine names are different,
all the routines will be included. If a routine from cards
has the same name as a routine from the disc, the one
from cards has precedence. Thus it is possible to include
modified versions of disc routines in the job pack. They
will override the disc versions, without actually altering
what is stored in the problem program area of the disc.

A further facility is that special control cards can be
introduced in the job pack which cause a number of card
images stored on the disc to be inserted into the input
stream as though they had been read from the card
reader. This is known as "data substitution". The
card images which are inserted may be stored semi-
permanently on the disc in the manner of library sub-
routines, or they may be put there temporarily during
the assembly of a particular job by including them (with
special control cards) near the beginning of the job pack
itself. The latter method is only useful, of course, if
the same sequence of cards has to be read several times
in the course of a job.

The information which is stored semi-permanently
on the disc (problem programs, library subroutines,
library data substitution blocks) is put there in a special
disc updating session which does not form part of normal
running. The actual updating is done on magnetic tape.
A copy of the contents of the disc is always held on
magnetic tape for back-up purposes. In fact three
separate tapes are used, part of the information being on
each tape. The updating process is combined with
copying—either tape-to-tape copying or disc-to-tape
(not tape-to-disc). The updated version of the informa-
tion then exists on magnetic tape. The disc itself is
loaded from magnetic tape by a special loading program.

The three magnetic tapes used as a back-up can be
used in an emergency as a disc simulator. The system is
then considerably less efficient, but not absurdly so.
The simulator also simulates the part of the disc which is
available to the user, special overwriting techniques being
used. Since there is no control over the way the user
uses the disc, however, simulation of the user's area may
be very inefficient.

Operating features
As has already been mentioned, both card input and

card and printer output are normally done "pseudo-
off-line," i.e. on input, cards are transcribed to magnetic
tape by the Director quite independently of the problem
program which is actually running, and the converse
happens on output. Alternative modes of operation are
available with direct input and output.

Basically two tape decks are needed for input and two
for output. Taking input first, cards are read and a
binary copy of the information they contain is written
on to magnetic tape (each card being represented by a
physical block on tape). "Binary" in this sense means
that the exact pattern of holes is copied, each column
being represented by 12 bits on tape. No processing at
all is done at this stage. Apart from being inspected
for certain patterns which indicate that the card is a
directive to the pseudo-off-line process itself, the infor-
mation on the cards is for the time being irrelevant. A
tape that is being copied on to in this way is called a
tape u.

While this is going on, a tape that has previously been
produced in this way is being read back and is acting as
an input to the central part of the system, i.e. the Job

299

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/8/4/297/400647 by guest on 19 April 2024



Egdon

Organizer, compilers or problem programs. A tape
that is being read in this way is called a tape v.

A switch of functions between the two input tapes
occurs when a tape v is exhausted. The tape u is then
rewound and becomes a tape v, and tape v likewise is
rewound and becomes a tape u. To avoid holding up
calculation while tape u rewinds, a special control card
can be inserted anywhere in the input pack which causes
it to rewind and wait, so that reading can start as soon as
the switch takes place.

At the beginning of a work session, there is of course
no tape v. Reading takes place to tape u until 600 cards
have been read, and a switch then takes place.

A further mode of operation is available in which no
automatic switching takes place, to deal with the case
where it is required to build up a stock of transcribed
tapes for a run which reads large numbers of cards very
quickly.

Pseudo-off-line output is a slightly more complicated
feature. It deals not only with printer output but also
with punched card output. Two tape decks are used,
one on which information from the job which is currently
running is being written (known as tape x), and one from
which a tape which has previously been written in this
way is being read back by Director and printed (known
as tape y). Blocks are variable in size, each one normally
representing the output of a single EGTRAN statement.

Items of information to be printed are mingled on
magnetic tape with items to be punched on cards, the
kind of information being indicated by a control word
at the beginning of the tape block.

Items for output are also classified in other ways,
according to whether they originate from the system
itself (e.g. compiler diagnostics) or from the problem
program, and, if it is problem program output, according
to priority, i.e. whether it is "immediate" or "delayed"
output (this facility is described in more detail later).
When a tape y is "played back", the operator is able to
indicate which classes of output are to be dealt with in
this pass of the tape (except in "rush-hour" mode—see
below). A special record written on the tape itself
records which items have already been printed or
punched, and which still remain to be done.

At the beginning of a pass of tape y, the operator
might, for example, indicate that all "immediate"
printer output should be produced, but nothing else.
On a subsequent pass he might indicate that all previously
unprinted printer output, and all card output, should
be produced, and so on. A combination of options is
available which enables the operator to print or punch
all information which has not been printed or punched
before.

Because a tape y may need more than one pass before
all its information is printed and punched, it is not
possible to switch tapes automatically as is done on
input. The operating procedure varies slightly according
to whether "rush-hour" or "production" mode is in
operation, but the operator always has to unload the tape
y and save it, and load a scratch tape for the new tape x.

In order to ensure quick turnround of results to users,
a maximum running time and maximum amount of
printing are fixed for each program. If the time limit
is exceeded, the program is terminated (normal wind-up
procedures of course being allowed). If the print limit
is exceeded, all subsequent items sent to the pseudo-
off-line tape are classified as "delayed", rather than
"immediate" which is the normal classification.

Besides the normal "production" mode of operation
in which time and print limits are fairly generous,
there is also a mode called "rush-hour", designed to
provide an extra rapid turnround on short jobs, in which
time and print limits are small. In rush-hour mode,
operators are allowed less freedom in the handling of
pseudo-off-line print tapes than in production mode.
For example, no printing other than immediate printing
which has not been done before is allowed, and each y
tape must be the previous x tape (i.e. an x tape cannot
but put aside and printed later).

Apart from loading cards in the hopper and handling
pseudo-off-line output, almost the only thing the
operator has to do is the loading and unloading of
magnetic tapes. He is aided in this by a tape control
scheme incorporated in Director, which locates the
correct reel no matter which deck it is loaded on, checks
labels, takes automatic corrective action in the case of
parity failure, and produces statistics of tape usage and
performance. An interesting feature is that label blocks
are accessible only to Director—they cannot be over-
written by problem programs.

The discfile
The use of the discfile has certain interesting features.

Like most discfiles, the KDF9 disc has the characteristic
that the time taken to switch from one trick to an
adjacent track is, because of the time taken to move
the positioner arm, considerably more than the time
taken to switch to a totally different surface, assuming
that no arm movement has to take place to bring the
head into position on the new surface. The addressing
of the disc is therefore arranged "cylindrically", i.e. so
that sequential addresses, having passed along all the
tracks accessible to one positioner, pass to the corres-
ponding tracks on the next disc and thence to the
corresponding tracks on other discs of the file, instead of
passing to adjacent tracks on the same surface.
Sequential addresses are thus arranged spatially along
concentric "cylinders" rather than along plane surfaces.
In fact, for a reason given below, the cylindrical addres-
sing is not continued through all sixteen discs which
compose the file, but stops short at the eighth disc. The
file is thus divided into two halves, each half having
cylindrical addressing within itself. No address in the
first half of the numerical range of addresses will lie on
the same disc as any address in the second half of the
range. Since the positioner arms of the KDF9 can
move independently {not all together like a comb) any
area of consecutive addresses of less than a certain size
(in fact 30,720 words) within each half of the addressing

300

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/8/4/297/400647 by guest on 19 April 2024



Egdon

scheme will be "movement-independent", i.e. once the
arms have settled into position for accessing this area,
any part of the area may be referred to without necessi-
tating further arm-movement.

A further feature of the addressing scheme is that it
optimizes as far as possible the use of fast and slow zones
of the discfile. (Again like most discs, the KDF9
disc packs twice as much information in the outer tracks
as in the inner ones, hence the transfer rate is twice as
great.) To the programmer, an address consists of two
parts, a "logical disc number" and a "sector number".
Logical discs always begin at the beginning of a series of
fast zone addresses, so that if a unit of information does
not exceed a certain size (actually 2560 words) it can be
stored entirely in a fast zone.

Disc storage is allocated in the following way at the
time of writing, though this allocation may well be
changed in the future. Areas are named in the order in
which they occur.

AREA APPROXIMATE SIZE
(THOUSANDS OF WORDS)

Subroutine library 131
Library data substitution 131
Temporary data substitution 80
System programs 77
Job Assembly 2 230
Problem Programs 1317
User's area (also Job Assembly 1) 1966

3932

It will be noticed that the user's area (the beginning of
which is used between jobs for the Job Assembly 1 area)
occupies the second half of the disc while everything else
is in the first half. This means that no positioner arm
which is used to access the Job Assembly 1 area is used
for any other area used by the system. The reason for
this is that during job organization, Job Assembly 1 is
constantly being referred to. In the first place various
items (e.g. library subroutines) are brought down from
the first half of the disc and packed into Job Assembly 1.
Later, at the relocation stage, chunks of programs are
brought down from Job Assembly 1 and sent to Job
Assembly 2. Access to the first half of the disc takes
place over a wide area and in a fairly random fashion,
but access to Job Assembly 1 is localized to a small area.
Thus Job Assembly 1, unless it exceeds 30,720 words,
becomes a "movement-independent" area as described
above. This has a significant reducing effect on job
organization time.

The compilers
Two compilers were written specially for the Egdon

system, a FORTRAN (EGTRAN) compiler and a User-
code compiler. Both operate entirely in the core store,
i.e. they are one-pass compilers, and both compile one
routine at a time. The routines are subsequently read
back and bound into a complete program by a system

program called the Relocator. Relocator also carries
out some optimization of FORTRAN routines in the
light of extra information which is available at relocate
time which was not available at compile time.

The FORTRAN compiler compiles from a dialect of
FORTRAN II called EGTRAN which is not appropriate
to discuss at length here. All the usual facilities of
FORTRAN II are included, together with certain
additional facilities peculiar to EGTRAN. In particular
the following may be noted:

(1) A facility for varying the dimensions of arrays at
run time without sacrificing the optimization of
subscripts.

(2) Recursive functions and subroutines, with preser-
vation of the values of variables between recursions
if required.

(3) Some additional statements for transferring whole
arrays to or from disc or magnetic tape, rather
than the normal FORTRAN "list" of variables.
This makes it possible to make transfers proceed
simultaneously with each other and with central
processor calculations, which cannot be done
(except to a very limited extent) with "list" type
statements because of the need for store protection.

The User-code compiler or assembler accepts a
punched card version of ordinary KDF9 User-code.
Its output takes the form of relocatable binary routines
which are completely interchangeable with those pro-
duced by the EGTRAN compiler.

Operational experience
Some seven months operational experience has now

been gained on the Egdon system. It has behaved
substantially as expected, being an efficient job-shop
operating system capable of reducing the time between
the submission of a job and the printing of results to a
minimum.

The combination of in-core compiler and independent
compilation of routines means that large jobs can be
amended and made ready for execution in a very short
time. For example, a particular multi-segment program
comprising 26,000 words of instruction in all (say 8000
EGTRAN statements) takes about 2\ minutes to organize
and relocate. This means that this is the time it takes
to make a trivial amendment to the program and to start
to execute it. This time will be significantly reduced when
certain improvements which are being made to reduce
the number of disc accesses are completed.

The compiler itself compiles 300 to 350 EGTRAN
statements per minute. Object program efficiency is not
as high as can be achieved with a multi-pass compiler,
but is typically 1 -5 to 4 times slower than hand-coded
program.

There are some points on which it can now be seen
that the system is inconvenient, the most important being
pseudo-off-line output. The volume of printed output
has been less than was expected, and the facilities for
coping with large volumes have therefore been largely

301

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/8/4/297/400647 by guest on 19 April 2024



Egdon

redundant. "Rush-hour" mode is currently not being
used at all, production mode with a small print limit being
used instead. Modifications will probably be made to
simplify the system.

A number of program errors have, of course, been
found after the passing of the acceptance tests. The
majority of these have been in the Director area, which
is not surprising because supervisory programs, being
dependent on real-time events, are notoriously difficult
to debug. No run has ever failed, however, for a reason
that was not fairly easily circumvented, and there has
never been a complete stoppage of work because of
errors in the software.

Implementation
One of the more unusual features of the Egdon

system is that it was completed on time and passed two
stringent series of acceptance tests. Since this cannot be
entirely explained by the brilliance of those who have
worked on it, it is worth while examining other factors
which may have contributed.

First, there are political factors. Since the customers
for whom the system was written had previously suffered
from a late delivery of software from an American
manufacturer, a stiff penalty clause was built into the
contract. This in itself did not ensure success, but it
led to an attitude of urgency on the part of all con-
cerned which was a major contributory factor. For
example, it made the customer particularly careful to
fulfil his obligations to us, such as providing us with
information by a given date, and to avoid too-frequent
changes of mind.

Secondly, PERT critical path scheduling was carried
out regularly. The writing of software is not an ideal
activity for this kind of control because there are so many
possible ways of achieving the final object. This meant
that the network underwent several major revisions during
the course of the project. But in spite of this and of the
large amount of unproductive clerical effort involved in
preparing data, the existence of the PERT caused a
kind of planning-consciousness to be created which had
an important bearing on success.

Thirdly, and perhaps most important of all, was the
existence of clear objectives from the start. The fact
that there was a formal customer-supplier relationship,
and that the customer was already an experienced com-

puter user, meant that decisions were arrived at by
controlled discussion, and properly documented. This
does not mean that every detail was worked out in
advance and that nothing was changed—in fact only a
general outline existed at first, the details were worked
out progressively over a period of several months, and
decisions were reversed on several occasions. But the
existence of a formal relationship, and the knowledge
that a penalty clause existed, damped down the oscilla-
tions that this kind of discussion often gives rise to, and
meant that a clear definition was arrived at quickly and
changes were kept to a minimum.

Implementation from the first planning meeting to the
beginning of the acceptance tests, took about 15 months.
A total of 20 man-years' programming work was
involved altogether, split roughly as follows:

EGTRAN and required library
User-code Assembler
Director
Relocator
Disc Update
Job Organizer
Auxiliary programs

Man years
7
4
3i
1
1
\

3

20

Acknowledgements
Dr. L. H. Underhill and Mr. I. C. Pull of A.E.E.

Winfrith, and Dr. K. V. Roberts and Mr. L. A. J. Verra
of Culham Laboratory played a major part in defining
the system and made many valuable suggestions con-
cerning implementation. The following, of English
Electric-Leo-Marconi Computers Ltd. unless otherwise
stated, helped to implement it:

J. W. Adams, G. M. A. Bernau (Culham Laboratory),
D. C. Bindon (A.E.E. Winfrith), T. R. Clayton, J. K.
Ebbutt, R. Godfrey, A. J. Harding, J. E. Hartley, P. L.
Havard, A. J. Heyes, Miss P. Higson, E. F. Hill, G. H.
Johnston, F. D. Mclntosh, D. G. Manns, B. F. J. Manly,
J. O'Brien, A. C. Peters, A. J. Robbins, A. Sutcliffe,
J. G. Walker, P. J. L. Wallis, B. C. Warboys, A. M.
Yates.

302

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/8/4/297/400647 by guest on 19 April 2024


