
The main features of Atlas Autocode

By R. A. Brooker, J. S. Rohl, and S. R. Clark*

This paper describes the main features of an ALGOL-type compiler that has been used very success-
fully with the Manchester Atlas for over two years. Since we are dealing with a working system
special attention is given to the input/output and fault monitoring facilities, and also to the efficiency
of the system. Not being bound by any particular dogma, the authors have felt free to play with
the system, and some indication of recent developments is given.

"Why not ALGOL?" is a question we get asked from
time to time. The reason is simply that when we started
on AA (Atlas Autocode) it was far from clear, to us,
whether ALGOL 60 (see Naur et al., 1963) could be
implemented sufficiently well (with the effort at our
disposal) to serve as a main programming language,
and we had the responsibility of providing such for the
Manchester University installation. We hoped we could
retain some of the more important ideas of ALGOL,
e.g., dynamic storage allocation, in a somewhat simpler
structure, and because we had in mind the provision of
numerous special facilities (e.g., list processing, special
forms of arithmetic) we would not have been content
with a subset. Such facilities would be intolerably
inefficient (and inconvenient to use) if implemented as
formal procedures—the only existing means of extending
ALGOL 60. We have of course paid a price for going
it alone, namely access to the ACM library of Algorithms,
but fortunately most of them can be converted to AA
very easily, as we have found with those of interest.
We have also found that they could benefit by conversion
to machine code, at least in the inner loops.

It is appropriate to describe the main features of the
language in ALGOL terms.

Alphabet

The basic characters on the Atlas Flexowriters are:

A . . . Z a . . . z O . . . 9
+ - • / ! () = < > - , . : ' i 2 [] a j 8 f f ?

From these it is possible with the backspace facility to
form compound characters, e.g., =̂ > < ; c f
[a and * do duty for the ALGOL symbols 10 and f , but
to avoid confusion we shall use the latter notation in
this paper.]

Names

These consist of a letter optionally followed by further
letters, digits, primes in that order, e.g.,

A temp a l ' A2 x".

The length is virtually unrestricted.

Delimiter words

These are underlined as in ALGOL, e.g., real, cycle

Types
These are limited to real and integer (there is no

Boolean) but otherwise declarations are as in ALGOL.
Further types of variables have recently been introduced
to facilitate complex and multiprecision arithmetic.
These are briefly described in a later section.

Blocks
An ALGOL block structure is used. Blocks may be

nested to any depth. They may be entered and left
only via begin and end. The scope of names (except for
labels) is the same as in ALGOL. A program is a block
with end followed by of program.

Labels and jumps
Labels are of two kinds N: and A(N):

The former are simple numerical labels; the latter are
switch labels. Jump instructions take the form —> N
and -»• A(I) where / denotes an "integer" expression
(see later). A label in a block may only be referred to
by an instruction in the block and not in a sub-block.
Checks are made for labels not set, and labels not referred
to are commented on. In the case of ->• A(I), the value
of / is checked at run time to ensure that it corresponds
to an actual label A(N). [This requires 4 instructions
over and above the evaluation of /and the jump itself.]

Expressions

Expressions employ the operators -\ * / t () m

the usual way. The * sign may be omitted if no ambi-
guity results (i.e., implicit multiplication). A superscript
2 can be used for 2. Brackets () are also used to
embrace the arguments of functions and arrays. For
example

given real y, y ; array a (1 : 10) ; integer i

2v * y' + Iog(y2) + /(i - 1) + a(i - l)/3 -14,0 — 2

Assignments
Assignments take the form

v = £

where v denotes any variable (location) and E an expres-
sion. If v is an integer variable, then E is rounded off to

* Department of Computer Science, The University, Manchester, 13.

303

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/8/4/303/400660 by guest on 13 M
arch 2024

Atlas Autocode

the nearest integer before the assignment takes place. An
expression treated in this way is denoted by /. In
denoting substitution of an expression in a statement we
use E or / to indicate the implied assignment.

Standard functions
Standard functions are similar to those of ALGOL

except that In, abs and entier in ALGOL are written log,
mod and intpt respectively in AA. In addition there are
the following:

parity (/)
fracpt (E)
int (I)
radius (£1, E2)
tan)

(- 1) '
fractional part of E
intpt (I + \), i.e., nearest integer
sqrt CEf + £])
tangent

Finally arctan in ALGOL becomes arctan(Ei,E2)

{result in (-=-, ~) if-Ei > 0

result in (-=, — J if E\ < 0

Conditional instructions

Conditional instructions take the form

< , I {CONDITION} then {UNCONDITIONAL INSTR}
^unless J

The CONDITION can be a compound condition, e.g.,

(x > 1 and y = 1) or n > 20

an elementary condition being of the form

>

<

The UNCONDITIONAL INSTRS include:
Assignment
Routine call & exit
Jump (including stop)
caption

Cycles
Only one form of cycle is permitted, namely

cycle / = Ix,I2,h
[LIST OF STATEMENTS]
repeat

Here i denotes any integer variable and Iu J2, /3 are all
expressions of the form /, such that (/3 — I{)jl2 is an
integer > 0. The /s are evaluated and this condition
checked as a prelude to the cycle. The Is remain
unaltered throughout the cycle. Cycles may be nested
to any depth.

Routines and functions
As in ALGOL a routine is essentially a named block

with parameters. In AA, however, a routine heading
of the form

(ROUTINE)
•< > {NAME} ({FORMAL PARAMETER LIST})

replaces the first begin
There are three types of routines (RT):

routine real fn integer fn

the corresponding exit instructions are

return result = E result = /

As with data a routine name should be declared before
it is referred to. This means either placing the routine
near the head of the block in question, or alternatively
giving an advance "specification" in the form

{RT} spec {NAME} ({FORMAL PARAMETER LIST})

and putting the routine itself near the end of the block.
It is useful when laying out a large program to give,
near the beginning of it, a summary of the relevant sub-
routines in this way.

The call statement for a routine is

{NAME} ({ACTUAL PARAMETER LIST})

The relations between the FORMAL and ACTUAL PARA-
METERS are as follows

FORMAL PARAMETER (FP) ACTUAL PARAMETER (AP)

integer name / %
real name x I name of a variable of
array name a I given type
integer array name k >
integer i I
real x E
routine R
real fn R name of a routine of

integer fn R given type

The names associated with the FPs (which can of course
be arbitrary) have the force of declarations inside the
routine, but when the FP is a routine (or function) a
spec must be inserted (from which the RT can be
omitted). An integer or real FP will be assigned the
value of the AP at the time of the call ("call by value").
A . . . name FP will be assigned the actual store location
of the AP; if the latter is an array element its subscripts
are evaluated at the time of call ("call by simple name").
In a list of FPs of the same type, the type delimiters
after the first may be omitted, e.g.,

routine spec print (real x, integer m, integer ri)

may be written
routine spec print (real x, integer m, n)

In what follows we shall abbreviate such a specification
in the form:

print (E, Iu J2)

304

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/8/4/303/400660 by guest on 13 M
arch 2024

Atlas Autocode

PERM
A small library of routines is preloaded at the head of

the block which surrounds the user's block, which is
therefore entirely within their scope. These routines
are used for fault monitoring, input/output (see next
section), matrix algebra, integrating differential equa-
tions, simple list processing, and other operations. For
obvious reasons the bulk of these routines are written
in machine code. Although these PERManent routines
are not, strictly speaking, part of the language, to the
user they appear so.

Input and output
Input and output functions are mostly performed by

PERM routines, special statements being avoided as
far as possible: so far there are only two, namely "read"
and caption. The permanent routines which we have
found most useful are:

select input (I)
select output (/)

read symbol (i)
print symbol (/)

print (£, Ih I2)

print ft (E, I)

read (v—list)

read binary (/)
punch binary (/)

/ refers to an input or output "tape"
in the Job Description

reads and prints symbols converting
to and from numerical equivalents
(see later)

prints the value of E with I\, Ii
digits before and after the decimal
point

prints the value of E in floating
decimal style to / significant figures

(a special instruction) reads nos. from
data tape, assigns them to listed
locations
reads/punches 5, 7, or 12 bits from/on
5, 7 hole tape, or cards. The bits
are handled as an integer.

Other routines serve to control the layout of the page:
tab advances the printing position

according to a preassigned table.
newline, newlines (/)
space, spaces (/)
runout (/) punches / blanks on a Teletype

punch (has no effect on the line
printer)

newpage gives "top of form" on a line
printer, 30 newlines on a Teletype
punch

next symbol a parameterless integer fn which
gives the numerical equivalent of
the next symbol on the data tape,
but does not advance it

caption STRING a special instruction which outputs
the characters in the string, ter-
minated by ;

A symbol in quotes e.g., ' = ' is a permissible form for a
constant, the value being the numerical equivalent of the
symbol, which is always an integer. Precise knowledge
of the constant is seldom needed, but can, if necessary,
be calculated from a table giving the numerical equi-
valents of the basic characters. These are integers in
the range 0-127. A symbol, or compound character,
can consist of up to three superimposed basic characters.
The numerical equivalent is 128y + z or 1282x
+ 128j> + z, where x, y, z are the equivalents of its
constituents and x > y > z.

In captions and between quotes we use the special
symbols

s or $ to denote space these symbols being ignored
? or $ to denote underlined on reading in the program

space text
; or | to denote semicolon because a ; or newline
H or u to denote newline is used to terminate a cap-

tion STRING

We must of course know the actual numerical equi-
valents of these symbols if we wish to use them (a
rather unlikely event) and for this reason they are listed
in the manual. For example, to print a $ symbol we
write: print symbol (14807).

Punching conventions
To facilitate punching we have arranged that state-

ments can be terminated by a newline or a semicolon.
As a consequence if a statement occupies more than
one line, all except the last one are terminated by c.
All spaces, underlined spaces, and superfluous terminal
symbols are ignored. The special symbols \ and 2 are
converted into -5 and \2 on input. (Regardless of how
it is punched a special case is made of f 2 in order to
compile efficient code.)

Comments may be inserted by means of

comment STRING or STRING

The second alternative was introduced to economize on
punching. In particular, underlining on Atlas Flexo-
writers entails backspacing, so that a delimiter word of
n letters involves 2m tape characters. For this reason
we have introduced a compiling mode which allows the
user to write his delimiter words in upper case letters,
provided all other names use only lower case letters, e.g.,

REAL a, b, c ; INTEGER ARRAY u, v (1 : 10)
Both forms of delimiters are in fact permitted in this
mode which is operative between the statements upper
case delimiters and normal delimiters.

Fault diagnosis
There are several facilities for helping to locate faults

in the object program. The first to be implemented
were label and routine tracing, and query printing. The
former is a facility for recording the main breaks in the
passage of control, and indicates either the sequence
of routines entered, and/or the jump instructions

305

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/8/4/303/400660 by guest on 13 M
arch 2024

Atlas Autocode

executed. Query printing allows the user to terminate
an assignment statement with a ?, thus

x = 1 + 2y ?

The program (or selected sections of it) can then be
compiled in one of two modes

(i) ignore queries in which the ?'s are ignored,
or (ii) compile queries in which extra instructions are

compiled for printing out the assigned value.

These two phrases are the statements actually used to
delimit the area of the program in which the facility is
operative. A similar device is used in connection with
label and routine tracing. These aids to fault diagnosis
require some action on the part of the user and of
necessity involve a separate run of the program. Perhaps
the most useful debugging aid is the stack post mortem
which is involved whenever an unforeseen fault arises.

Faults arising in the object program are classed as
trappable or untrappable, and they are detected in the
first instance either by the supervisor or the object
program. Untrappable faults are those regarded as
being necessarily catastrophic, e.g., an input stream, or
"tape", not denned in the Job Description (see Howarth
et ah, 1961), while trappable faults are those not so
regarded, there being some possibility of retrieving
matters by jumping to a preassigned part of the program.
An example of the latter situation is an arithmetical
fault (e.g., division overflow) occurring in a series of
independent calculations. In this type of program if a
particular "case" breaks down one can simply pass on
to the next.

Faults detected by the supervisor are as follows:

trappable
div overflow
exp overflow
sqrt argument < 0
log argument < 0
inverse trig fn out of range

(the above refer to arith-
metic faults arising in
basic or extracode
instrs.)

no more data in input
stream

more store required
local time exceeded

The following faults are
in the object program.

trappable

spurious character in data
non-integral data assigned

to integer location
other data faults

untrappable
computing time exceeded
output allowance exceeded
input/output streams not

denned (these refer to
declarations in the Job
Description)

illegal instruction (obeying
a word which is not an
instruction)

illegal operand (reference
to a private part of the
store)

detected by tests compiled

untrappable
switch label not set

(e.g., -> A(i) where / = 3
and .4(3) is n o t se t)

array dimensions < 0
(e.g., array A(m: n),

where n — m < 0)

non-integral cycle count
(e.g., cycle i = 1, 2, p,

where p is even)
array subscript out of range
incompatible matrix dimen-

sions
(refers to some matrix

arithmetic routines in
PERM which check
that the operands are
compatible.)

call for non-existent routine
(could in theory be de-

tected at compile time,
but is easier to handle
at run-time)

Note: "array subscript out of range" is only detected
as a fault on request. This is done by delimiting the
areas of interest in the program by the statements
compile array bound check and stop array bound check.
Outside these areas faults of this kind will not be detected
and may in fact cause extravagant effects. The reason
for making this facility optional is that the extra instruc-
tions required in the program may substantially increase
both the size and running time of the program, the latter
by up to 100%. It would be essential that checks of this
kind should be built into the hardware of any future
machines.

When a trappable fault occurs the supervisor, or the
object program, refers to a "trapping vector" to find the
address to which to transfer control. This trapping
vector contains one entry for each type of fault (the
faults being numbered 1, 2, 3, . . .) and is set up by the
user, or rather by the compiler from information supplied
by the user. This takes the form of instructions, for
example

fault 1, 5-^3 , 2,4-s> 1
This would cause a jump to label 3 should a (trappable)
fault of the type 1 or 5 subsequently turn up, or a jump
to 1 in the case of a fault of type 2 or 4. The labels
must be local to the block in which the above fault
statement occurs, usually the outer block. In the event
of a fault the stack is cut back to its extent at the time
the fault statement was obeyed, but some variables may
have been altered in the meantime and allowance must
be made for this in planning the rescue operation.

If a trappable fault is not trapped the program ter-
minates with the standard monitoring, as in the case of
an untrappable fault. This monitoring consists, firstly,
of printing out the line number of the faulty statement
and the name of the routine (or serial no. of the block:
see program "map") in which it occurred. Following
this it prints out a summary of the working space
(scalars and cycle counts) in the last block entered at
each level as far as the current (faulty) block. To
identify the monitored variables the table of names is

306

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/8/4/303/400660 by guest on 13 M
arch 2024

Atlas Autocode

faults detected by
the compiled program

faults detected by
the supervisor

(trappable
faults)

(untrappable
faults)

1:3 :

untrapped

faults

print line and
routine/block identifier

print summary of stack

stop

Fig. 1.

retained at run-time. An example of the monitoring
for a specimen program is given in the appendix. Fig. 1
illustrates the fault handling system using the trapping
vector set up for fault 1, 5 -* 3, 2, 4 -> 1.

Efficiency of the object program

As in most ALGOL translators the object program
uses a stack to store data and for working space (see
e.g., Watts, 1963). An index register is associated with
each textual level and points to the section of the stack
opened up by the activation of the current block at that
level. The previous contents of the index register (and
the link if the block is a routine) are preserved in the
stack immediately on entry to the block, and are subse-
quently restored on leaving it. When a routine is
handed on as a parameter of another routine it is also
necessary to hand on a picture of the relevant index
registers as they were at that point. When the para-
metric routine is eventually called in, it is necessary to
reset temporarily the index registers to their original
state. This latter operation is performed by three
central banks of instructions which preserve, reset and
restore up to 9 index registers according to the point of
entry, this being chosen so that only the relevant index
registers are interchanged.

For each block the stack is divided into a static and
dynamic part. Scalars, array boxes, cycle parameters,
whose size is known at compile time are allocated to the
static part where they can be accessed by a single
(modified) instruction, reals are stored as floating
point numbers, integers as destandardized numbers
which allows them to be used either as address additives,
or as operands in an arithmetical expression. All these
quantities are initialized to zero on entry to the block,
and the stack pointer advanced to the end of this part
of the stack, the extent of which is known at compile
time. Dynamic items, i.e., arrays, are then allocated
storage from this point onwards. An array box con-
sists of two address words, one of which points to the
dope vector (which may be shared by several arrays)
and the other points either to the array itself (if it is a
vector) or to a hierarchy of address words which point
to the rows, planes, etc., of the array (a scheme suggested
by Iliffe, 1961). In this way any particular array ele-
ment can be reached by a simple succession of store
references (one for each dimension), without any multi-
plications. This, together with the fact that integers
are stored in address units, means that array elements
such as a(i + 1 ,7+2) can be "fetched" in 5 instructions.
On the other hand, it is difficult to improve the system
without resort to optimization procedures which would
equally well benefit a simple scheme not involving the
"Iliffe" vectors. To give the reader some idea of the
efficiency (or lack of it) of our object program, we give
below the translation of the following cycle.

334
—121

— ^ 3 3 0

-•356
101
104
324
101
104
362
320
356
334
331
235

0
127

0

0
97
97
0

97
97
0
0
0
0
0

127

sum
cycle /

sum = sun

= 0
= p,q>r
i + 0(0 b{i)

repeat

prelude to evaluate
P, r + q, r
that (r -

and check
- p)\q is

an integer > 0

(P)

(r+q)

(0
(0
(a)
97 0
(0
(b)
97 0
(sum)
(sum)
(0
W

enter cycle with
initial value of i
form i + q = (i — r)

+ (r+q)
restore i
form address of a(i)
in index register 97
fetch a(i)
form address of b(i)
in index register 97
multiply a(i) b(j)
add sum
restore sum
form difference
/ — r in ace
jump if ace ^ 0

307

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/8/4/303/400660 by guest on 13 M
arch 2024

Atlas Autocode

The use of machine code
Facilities exist for using machine instructions in AA

programs, although needless to say, this is not encouraged.
In some cases, however, it is useful

(a) to speed up a critical inner loop
or (b) to perform some function not available through

formal Autocode statements.

Examples of the latter are the use of local timers, and
the1 use of peripheral equipment in certain special modes.
To illustrate machine code we give in Fig. 2 the optimum
form of the scalar product loop used in the previous
section.

It will be seen that this loop takes 6 instructions com-
pared with the 13 of the formal translation. [Note: the
above loop can be improved still further by moving the
"124" instruction to follow the "362" so that it will be
completely overlapped. This will necessitate other
minor changes, however, and we shall not give details.]

Speed of translation
Having revealed something of the quality of the object

code it is appropriate to say something about the speed
of compiling it. Several improvements have been made
to the original AA compiler. The figures in Table 1 refer
to one of the latest versions.

The following table gives a breakdown of the compiling
time for 4 programs. The figures are based on instruc-
tion counts provided by the Atlas Supervisor. As may
be expected there is a good deal of variation from one
source program to another.

Notes on Table 1
1. This is simply the time spent in reading in the

program. More precisely it is the time charged to
the compiler by the Supervisor which supplies the

prelude to compute
addresses
and b{f)
them in
registers

of
and
the

a(r)
place
index

97 and 98,
and evaluate p and<7

- > 1

121 , 9 9 , —
122, 9 9 , -
121 , 127 , 0

3: 124, 99 , —
324 , 97 , 99
362 , 98
320, 0 ,
356, 0 ,

99

• P
, r
, 1:

',0
,0
, sum
, sum

-215 , 127 ,99 , 3:

form p — r
in IR 99

increment by q
fetch a(i)
form a(i) b{i)
and add
to sum
test for last cycle

Set i = r

Fig. 2.

characters in 6-bit internal code, with its own
"shift" system. It is approximately proportional
to the length of the program tape.

2. This is the time spent in converting to 7-bit code,
and then to reconstructing the image of the symbols
on the line. Each symbol may be formed by super-
imposing up to 3 distinct basic characters (a
compound character). It also includes the removal
of spaces, underlined spaces, and erases.

3. In this stage all the names, constants, and delimiter
words are converted into 48-bit words, and cate-
gorized to simplify the decision processes of the
next stage. Stages 2 and 3 account for well over
half the total compiling time.

Table 1

input of program (see Note 1)

line image construction (see Note 2)

elementary syntactical analysis (see Note 3)

further analysis and compilation (see Note 4)

instrs. obeyed in compiler/ 1024

size of object program (instrs.)

total number of statements

length of program tape (including blank tape) in feet

22-3

45-0

19-9

12-8

1106

3528

406

116

17-4

55-7

14-4

12-5

1934

3704

664

214

12-4

4 2 0

29-8

15-8

3452

1673.

936
(approx.)

?

19-8

44-8

17-2

18-2

1628

3980

513

176

% of total
compiling

time

308

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/8/4/303/400660 by guest on 13 M
arch 2024

Atlas Autocode

4. This is the translation stage proper. The instruc-
tion is analyzed and either converted to object code,
or used in some way to control the compiling
process.

Stages 1, 2, and 3 are applied a (complete) line at a
time; stage 4 a statement at a time.

Program no. 1 was a test program using short
identifiers.

Program no. 2 used largely English words as identi-
fiers.

Program no. 3 consisted mainly of machine instruc-
tions, each of which occupy 10-20
characters.

Program no. 4 was a typical applied mathematical
program.

Except in the case of programs like no. 3, between
300-400 instructions are executed in the compiler for
every instruction compiled.

Recent developments
We can deal with these only briefly here, a full account

will be published elsewhere.

Appendix
Example of a faulty program and associated monitoring.

begin
b, c,alpha,al,a''

Further arithmetic types. Work in this area has taken
two directions.

1. Introduction of a type complex which like real or
integer can be used in expressions of the form
already described, e.g., complex z, real u, integer
k ; z = u + 2nki.

2. Introduction of an entirely new form of expression
which is at the same time a statement, e.g.,

• [A a / 3 [A j 8 [A a j 8 A] < x] j8A]
Here the A's denote operands, and the a's and
/2's are (right) unary and binary operators, respec-
tively. All operators have the same precedence
and, except for [], the expression is processed
from left to right. Included in the j8*5 are
assignment = > , and jump —>. The operands
used in such expressions represent a new family
of composite types, these being numeric (single,
double, and multi-precision, real and complex)
and non-numeric (logical and label). {See
Brooker, 1964.)

Structures. Some facilities for denning, constructing,
and analyzing tree structures {not list processing) have
been included in order to give AA some capability in the
area covered by the compiler-compiler.

123

real
integer 1, J, k.theta
array x(l:10>
cycle k = 1, 1, 10
x(k) = k
repeat
k = 0

routine spec test Kreal d, integer m)
routino spec test 2 (roal name e, integer name n.real fn tost3>
roal fn spoc tost ^(array name y)
a = 1 j alpha = 7.663 ; al = 10.4 ; a11 = 21.6
j = 2 ; thota
tost 1 (2, 3)
routino tost 1 (real d
roal f
intogor o
f = 1.51 0 = 3
tost 2(f, O,tost3>
end

routino test 2 (roal name
spoc tost ^(array namo y)
roal g
Intogor p
g = 6.7; p = 4
g=tost 3(x)
ond

roal fn tost 3 (array n;
h

gor namo n .roalfn tost3)

loy)

COMPILER AB/3
1 BEGIN BLOCK NO = 91 ADDRESS = OOII505O

15 BEGIN ROUTINE<TEST1> NO = 9 2 ADDRESS = OOII6272
2 0 END ROUTINE<TEST1> OCCUPIES 3 7 LOCATIONS
2 1 BEGIN ROUT1NE<TEST2> NO = 9 3 ADDRESS = OOII675O
2 7 END R0UTINE<TEST2> OCCUPIES 4 2 LOCATIONS
28 BEGIN REAL FN<TEST3> NO = 9 4 ADDRESS = OOH75OO
39 END REAL FN<TEST3> OCCUPIES 79 LOCATIONS
40 END BLOCK OCCUPIES 2 4 4 LOCATIONS

PROGRAM ENTERED

A RUN TIME FAULT HAS OCCURRED AT

LINE 3 3 REAL FN <TEST3>
SCIRT -VE

THE FOLLOWING BLOCKS AND/OR ROUTINES WERE EXECUTED

BLOCK 9 1
A= l.OOOOlO O ALPHA= 7.663OIO O A l = I.O4OOIO X
A " = 2 . l 6 o O » 1 J= 2 THETA= 123
CYCLE <K> EXECUTED 10 TIMES
THE PROGRAM NEXT CALLS IN AT LINE 14

1, 10
h=sqrt(-2)
ropoat
cyclo g=l,l,3
h=h+g
ropoat
rosult =h
ond
ond of program
• ••z

ROUTINE <TEST1>
F= I.5OOOIO O 0= 3
THE PROGRAM NEXT CALLS IN AT LINE 19

ROUTINE <TEST2>
G= 6.7OOOIO O P= 4
THE PROGRAM NEXT CALLS IN AT LINE 26

REAL FN <TEST3>
H= 6.43OOIO O G= 1
CYCLE <G> EXECUTED 0 TIMES
CYCLE <G> NOT ENTERED
THIS IS THE REAL FN IN WHICH THE FAUIT OCCURRED

309

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/8/4/303/400660 by guest on 13 M
arch 2024

Correspondence

Acknowledgements
Some material from the Atlas Autocode "Mini-

Manual" (Lunnon and Riding, 1965) has been adapted

for the first part of this paper, and we would like to
thank the authors of that document for simplifying our
task in this way.

References
BROOKER, R. A., and ROHL, J. S. (1965). The Atlas Autocode Reference Manual, Manchester University.
LUNNON, W. F., and Riding, G. (1965). The Atlas Autocode Mini-Manual, Manchester University.
HOWARTH, D. J., PAYNE, R. B., and SUMNER, F. H. (1961). "The Manchester University Atlas Operating System Part II: User's

Description," The Computer Journal, Vol. 4, p. 226.
ILIFFE, J. K., and JODEIT, J. G. (1962). "A dynamic Storage Allocation Scheme," The Computer Journal, Vol. 5, p. 200.
WATT, J. M. (1963). "The realization of ALGOL procedures and designational expressions," The Computer Journal, Vol. 5, p. 332.
NAUR, et al. (1963). "Revised report on the algorithmic language ALGOL 60," The Computer Journal, Vol. 5, p. 349.
BROOKER, R. A. (1964). "A programming package for generalised arithmetic," Comm. A.CM., Vol. 7, p. 119.

Correspondence: Commercial English languages
To the Editor,
The Computer Journal.
Sir,

I should like to comment on the very informative article
by R. M. Paine in the October 1965 issue of The Computer
Journal, entitled "The Gradual acceptance of a variety of
commercial English languages." Under the heading 'Com-
pact COBOL' the second paragraph describing the method
of translation is a little misleading. The reader might well
get the impression that COBOL and other languages on the
I.C.T. 1900 are translated first into PLAN. This is not true.
The form of output from the COBOL compiler is the same
as that from the PLAN compiler and from the compilers for
the other languages Rapidwrite, FORTRAN, E.M.A. and
ALGOL. This is also the form in which many of the library
subroutines are stored. This common form is an acceptable
input to a Consolidation routine and it is this which lends
itself to the automatic inclusion of subroutines and the easy
amalgamation of sections of program written in different
source languages.

Yours sincerely,
E. HUMBY

International Computers and Tabulators Limited,
Bridge House, Putney Bridge, London, S.W.6.
27 October, 1965.

To the Editor,
The Computer Journal.
Sir,

It is surprising that Mr. Paine's paper on commercial
English Languages (1) should have been delivered to an
international conference in New York as a balanced state-
ment of affairs in the U.K.

It is typical of this article that it nowhere mentions
Language H by name, although this is a British language
that has already been implemented on three widely different
NCR/Elliott computers (405, 315 & 803) and is being devel-
oped on another (4100). The section of the article on ACL
is very misleading and I will return to it later in this letter.

Use of the phrase "anti-COBOL, anti-standardization" is
a way of "proving" guilty by association. Presented with an
adequate COBOL compiler for a specific machine, I will
gladly use it as a normal tool of the trade; but if you insist
on raising it up as an idol of standardization, then I may
point out its very obvious feet of clay. My Biblical metaphor

is perhaps provoked by that other phrase "tower of Babel";
the actual plot of this story has no relevance whatever to
our problems, and the phrase seems to serve as a shorthand
way of sneering at people with the ability and energy to
create new computer languages.

Where we need standardization is in our thinking and
talking abour computer languages—notation, standard meta-
language, definition of concepts (2), analysis of structual
features etc. There was an opportunity about five years ago
for standardization in the U.K., when a meeting of all
manufacturers was held. Unfortunately, one representative
at that time prevented the meeting from getting down to hard
thought and work, and persisted in wanting merely to follow
the latest transatlantic fashion (which happened to be
COBOL). Another lost opportunity was the European
meeting at Amsterdam a few years ago, to consider adaptation
of ALGOL for business data processing.

Mr. Paine's article has the usual references to scores of
man-years being spent on compiler writing. One is tempted
to generalize, unfairly, that the more the man-years the
worse the result. You do not need a large team to write a
compiler; you need a small group of intelligent people.
There are hundreds of such competent people in this country,
but the frustration has been that management of British and
ostensibly British computer manufacturers and the large users
have seldom had the guts to invest in the ability of their
technical staff.

Where the man-years are needed is in the "infra-structure"
of compilers, in the operating systems and file conventions
etc. Most of all they are needed in the publication of
manuals and in continually updating them.

To return to ACL (Atlas Commercial Language), there are
a number of inaccuracies in the article:

(1) ACL was not developed by the Institute of Computer
Science, but by University of London Atlas Computer
Service, who operate the computer.

(2) At the date of the article, May 1965, there were already
several working ACL programs.

(3) The remark about "Print (A + B — C)" is obscure.
This feature is not in fact part of ACL, but in any
case it is a routine facility of computer languages (3).
The point of ACL is that a particular "shape" of
printed line is defined by column positions across the
page, using literals and data names (either new ones
for printing, or already defined somewhere else),
together with the pernickety editing details that are so
important in business reporting.

310

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/8/4/303/400660 by guest on 13 M
arch 2024

