
Atlas magnetic tape

magnetization which may be mistaken for a clock pulse
on playback. This is guaranteed during Pass 3 by
magnetizing the clock track, after the last clock reversal
of the leading address, in the erase direction and ensuring
that an even number of reversals takes place up to and
including the last clock reversal of the next leading
address.

The block address itself consists of five reversals of
magnetization on each clock track. Thus when the
address of the first block is written its last reversal will
leave the tape magnetized contrary to erase unless an
odd number of reversals precedes the first address. For
this reason an isolated reversal of magnetization occurs
before the first block address, causing there to be six
reversals of magnetization between the write current

being first turned on at the beginning of Pass 3
whilst the tape is still on leader, and the region of tape
between the leading address of the first block and the
data.

It is also important to check for the presence of this
isolated reversal, and facilities are provided for this
during playback in Pass 4. Having provided a system
for writing and checking an isolated reversal it is used
in every interblock gap during Pass 3, and the write
current is kept in the erase direction at all times except
whilst writing the isolated reversal and the leading block
address.

A final check of the direction of magnetization of
every block is carried out in Pass 7 as data are written to
each block in the conventional way.

Correspondence

To the Editor,
The Computer Journal.
Sir,
I must admit that my previous acquaintance with reductio
ad absurdum arguments has been confined to those which
state the hypothesis which it is their intention to disprove;
in the light of Mr. Lunnon and Mr. Outred's letter,* however,
1 now understand that Mr. Strachey intended his prooff to
commence:

Suppose that there exists a Boolean function, which we
will call T[R], taking a routine (or program) R with no
formal or free variables as its argument, such that, for all
R, T[R] = True if R terminates if run and T[R] = False
if R does not terminate.

I was obtuse in taking Mr. Strachey's proof to consist of
definition and counter-example; however, I feel that my
refutations^ require but little amendment to meet the reductio
ad absurdum argument, and I hope that you will allow me to
rephrase them in that context.

In all three of these arguments I equate "program" with
"program capable of being run". My understanding is that
Mr. Strachey would concur. If, however, he does not—if
he considers that a set of instructions not capable of being
run still qualifies for the title "program"—then I will imme-
diately agree that T\R\ does not exist (in the sense of "is not
defined") for all programs R; the proof is then trivial.

(i) I asserted that the function T exists by definition. Let
us define it now.

Let R be a program (with no formal or free variables).
Either R terminates if run or it does not. Define 7\R] =
True if R terminates if run; T[R] = False if R does not
terminate if run. T\R\ is, then, defined for all R.

It should be noted that for certain R the value of T[R] is
unknown—I agree with Mr. Higman* in lamenting the fact
that we do not know T[A], where A is the example program he
gives. For other R the value of T[R] may be unknowable—
in the light of Godel's Theorem it should be possible to prove
this. But the fact that the value of a function is in some cases
unknown or unknowable does not affect the question of the
existence of the function.

(ii) I asserted that P is not a program. My original

An impossible program**
argument is certainly invalid in the light of the fact that Mr.
Strachey's argument is a reductio ad absurdum one. May
I replace it by another?

(iia) Consider the set of instructions P'\
Set of instructions P'

\L: if ygotoL
Return §

In working through this set of instructions we arrive at the
question: what is the value of Y1 Is Y true or is it false?
If the value of Y is known, then we can insert this value and,
so, proceed with the execution of the set of instructions. But
if the value of Y can not be determined until after the execu-
tion of P' has been proceeded with beyond this point (and
clearly P' can not be proceeded with until after the value of Y
has been determined) then we are at an impasse: P' can not
be executed, and, so, is not a program. A particular case
occurs when Y is T[P']; in this case P' is P. P is not, then, a
program.

(iii) I asserted that Mr. Strachey had drawn too restricted
a conclusion from his argument. In any reductio ad
absurdum argument one has not just one hypothesis but
several (or, if you like, one compound hypothesis). Arrival
at a contradiction by a valid argument demonstrates that (at
least) one of the original hypotheses is false. But it does not
indicate which of the original hypotheses is false.

In the case of Mr. Strachey's argument a second hypothesis
is (implicitly) introduced: that P is a program. The contra-
diction at which he arrives by valid argument demonstrates
that one of the hypotheses is false. I maintain that his
conclusion can be no more than "either T does not exist or
P is not a program".

In conclusion, may I apologize to you and Mr. Strachey
for the style of my previous letter. At the time of writing it
I could not entirely dismiss the suspicion that Mr. Strachey
had his tongue in his cheek, and I was attempting to guard
against being taken in by a hoax; but that does not excuse
its somewhat impertinent tone.

Yours faithfully,
27 August 1965 H. G. APSIMON

• This Journal, July 1965, p. 175.
t Ibid., January 1965, p. 313.
t Ibid., April 1965, p. 72.

* * The first three of the letters that follow were received before the October issue went to press, but unfortunately they had to be held over for
lack of space. ED.

329

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/8/4/329/400741 by guest on 20 M
arch 2024



Correspondence

To the Editor,
The Computer Journal.
Sir,
I have just come across Strachey's letter (The Computer
Journal, Jan. 1965; reprinted in Computing Reviews, July 1965)
on the impossibility of writing a program which "can examine
any other program and tell, in every case, whether it will
terminate or get into a closed loop when it is run." The
letter was of particular interest to me because I had, several
months ago, proved that it is indeed possible to write such a
program, at least in the case of finite memory. It may be of
interest to compare my approach with Strachey's (and Prof.
Turing's) to observe why the results are not in fact contradic-
tory.

A computer with finite memory has a finite number of
states bm, where b is the number of values which each
memory element can take (two, for a binary computer) and m
is the number of memory elements. Let us say that a routine
terminates if and only if it comes to an instruction which
transfers to itself; i.e., does not change the state of the
computer. Then a program terminates if and only if the
computer eventually reaches a state such that it is the same
as the next state. Specifically, let M be the memory of the
computer, which is a finite set (including all registers and the
location counter); let B be the set of values which each
memory element can take (B = [0, 1 ] for a binary computer),
let S be the set of all maps S: M->- B, that is, all states (or
instantaneous descriptions) of the computer, and let /: S -> S
be the map which determines, for each state of the computer
(including the value in the location counter, of course) the
next state of the computer. A program is now a particular
state S of the computer. (A program may, of course, be
represented by various states S, each of which has the same
values in that subset of M in which the program is stored;
but this point is not essential to the argument.) To determine
whether the program S terminates, one simply calculates
l(S), I2(S), . . . , until a power Ii+\S) is found which is equal
to /'(S). The program S terminates if and only if j = 1.
The various states Ik(S) may be kept in a finite memory M'
which is disjoint from M; the process will always terminate,
since S is finite, and since each l\S) has a finite representation,
the memory M' may likewise be taken as finite. Thus the
theorem is proved.

It is interesting to note that Strachey's disproof does not
seem to involve memory; it is applicable to programs running
in finite memory, and itself uses a finite procedure which does
not use recursion or pushdown storage. The difficulty seems
to be that what was actually proved above is the following:
Given any program in a finite memory M, there exists a program
in a finite memory M' (whose cardinality depends on that of
M) which will determine whether the original program ter-
minates or not. Strachey's arguments do not contradict
this fact. If Strachey's program P is imbedded in M, and
his T(R) (which determines whether R, and in particular P,
terminates or not) is imbedded in M', then P calls T, so that P
is in fact imbedded in U u M', and thus the conditions of the
statement are violated. In general, M' must be much larger
than M.

Sincerely yours,
W. D. MAURER

Room 813,
545 Technology Square,
Cambridge, Mass.
27 August 1965.

To the Editor,
The Computer Journal.
Sir,

The point made by Phillips and Irish on Strachey's proof
is worth underlining.

The proof still admits of there being sets of routines
other than the class of all routines for which the function
can be written. It is easy to find particular cases (admittedly
generally trivial) of such sets. For example the set of routines
consisting of a sequence of assignment statements turned into
a closed loop by a simple go to. Such a routine can arise
from incorrect labelling or the accidental omission of a
conditional branch instruction.

That such sets exist is hardly surprising, for determining
whether or not a program gets into a closed loop is something
programmers are doing every day. It would be very odd if
some of the tests and intuition they use in doing this could not
be turned into worthwhile compiler diagnostics. Writers of
these in the world of practical application should not let
Strachey's formidable piece of generality frighten them off !

Yours faithfully,
P. J. H. KING

University College of Wales,
Aberystwyth.
3 September 1965.

To the Editor,
The Computer Journal.
Sir,
Stripped of its technicalities, is not the essence of this question
the same as Bertrand Russell's query about "the class of all
classes which are not members of themselves" ?

Many of your correspondents subsume the validity of
reductio ad absurdum and of the law of the excluded middle
on which it normally depends. Relevant to this is Brouwer's
contention that the idea that a thing must have a certain
property or not have a certain property is legitimate only
when applied to finite sets.

Yours faithfully,
C. H. R. MORRIS

National Coal Board,
Ocean Buildings,
Bute Docks,
Cardiff.
22 October 1965.

330

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/8/4/329/400741 by guest on 20 M
arch 2024


