
Theorem-proving for computers:
Some results on resolution and renaming
By B. Meltzer'

It is shown that J. A. Robinson's P,—deduction is a special case of a large class of types of
deduction by resolution, an optimum choice from which should be possible for any particular
theorem to be proved. Some further results, based on the operation of renaming literals by means
of their negations, are obtained and suggest an alternative approach to automatic deduction.

A considerable step forward in the development of
theorem-proving by machine was taken by Robinson
(1965) with the introduction of the resolution method.
In this method the conjunction of the axioms and the
negation of the theorem to be proved are in the usual
way (cf. Davis, 1963) converted into a conjunction of
so-called clauses, each clause being a disjunction of
atoms (i.e. atomic predicates) which may or may not be
negated. The arguments of these predicates are variables
or constants or functions of these. For the theorem to
be valid the conjunction of this set of clauses must be
shown to be unsatisfiable.

Previous methods (cf. Davis, 1963) used Herbrand's
theorem directly by explicitly instantiating these clauses
over a finite subset of the Herbrand universe of constants,
and then attempting to show that the conjunction of the
resulting set of clauses, the so-called ground clauses, led
to a truth-functional contradiction. (A ground clause is
any clause in which each variable has been replaced by a
constant belonging to the Herbrand universe.)

In Robinson's method, the test for unsatisfiability is
carried out directly on the clauses, and not on their
instantiated or ground versions. This is effected by the
iteration of a single operation termed resolution. To
describe this operation, let us—as is customary—term
any atom or any negated atom a literal, and term two
literals which are negations of each other complements.
Resolution operates on two clauses, when one of them
contains at least one literal whose complement is either
contained in the other or can be generated in the other
by some substitution for its arguments. When this is the
case, a new clause known as the resolvent is formed from
the two parent clauses, which consists of all the literals
in the parents except the matched complementary pairs.
(The arguments in some of the literals may, of course,
have been changed if a substitution had been required
for the matching.) Robinson's basic result is that if
resolutions are carried out on the original set of clauses
and the ones generated by these operations, then the
original set is unsatisfiable if and only if an empty clause
can be generated. So the theorem is proved when an
empty clause has been generated.

The superiority of this method to others described in
the literature is clear. To use it for a systematic proof
procedure on a computer, however, does still in general
demand a great deal of data processing, for since one
does not know to start with which chain of resolutions

is going to lead to an empty clause, one would appear
to have to try out systematically all possible resolutions.
Put another way, one does not know—to start with—
which subtree of the full tree of deductions by resolution
to select.

Some computer programs have therefore been written
which use resolution but incorporate heuristic devices
which restrict the extent of the full deduction tree
traversed.

However, in as yet unpublished work, Robinson has
pointed to a non-heuristic way of achieving this end,
which appears to be very powerful. This is by means of
what he terms /Vdeduction, which is described below.

The purpose of the present article is, first, to extend
this result by showing that /^-deduction is only a special
case of a large family of types of deduction termed
/^-deductions, from which one should be able to select
—for any given problem—the most suitable one for
restricting the extent of the deduction tree traversed.
The demonstration of this result is based on a simple
operation, termed renaming, which consists merely in
replacing the use of a given atom, A say, by the use of
another one A' which is its negation, so that A — A'
and A — A'.

Simple, and apparently trivial as the operation of
renaming is, the second part of the present article
shows how by its aid some interesting and potentially
powerful results in proof theory can be obtained. It
will be seen that there are even indications that it may
be used as a basis for an automatic deduction procedure,
alternative to resolution itself.

Robinson's /^-deduction theorem

Let us term a clause which has no negated atoms a
positive clause (and one which has only negated atoms
a negative clause). Any resolution in which one of the
parents is a positive clause is termed a /^-resolution,
and the resulting clause a iVresolvent. (It is obvious
that the other parent cannot be a positive clause too.)
A chain of Px-resolutions is termed a /^-deduction.

Robinson has proved the following:

Theorem 1
If S is a finite unsatisfiable set of clauses then there

is a /^-deduction of the empty clause from S.
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Theorem-proving

It is immediately clear how very greatly, in general,
this theorem will allow us to restrict the number of
resolutions to be tried out systematically in attempting
to prove a theorem.

Definition of renaming
Let Ax, A2,. . ., Ak be any set of atoms appearing in a

set 5 of clauses. The replacing in S of At by A[, Ax

by A[, A2 by A'2, A2 by A2, . . ., Ak by A'k, is termed a
renaming of 5".

Definition of Pp-resolution, Pp -resolvent
and Pp-deduction

Let all the atoms appearing in a set of clauses be
partitioned by a partition p into two sets px and p2. A
clause in which every atom belonging to />, is negative
and every one belonging to p2 is positive we shall term a
/7-clause. Clearly if one of the parent clauses of a
resolution is a /^-clause the other is not. Any resolution
in which one of the parents is a /J-clause is called a
Pp-resolution and the resolvent a Pp-resolvent. Any
deduction consisting of a chain of /^-resolutions is
called a /^-deduction.

Theorem 2
Let S be a finite unsatisfiable set of clauses and p any

partition of all the atoms occurring in S. Then there is a
/^-deduction of the empty clause from 5.

Proof:
Consider the full tree T of all deductions by resolution

from S. Consider the isomorphic tree T' in which
atoms have been re-named by changing all literals A-,
and Aj derived from the set px into A\ and A\, respec-
tively, the set S being transformed into the set 5', say.
Since 5 is unsatisfiable, so is S", and therefore by
Theorem 1, there is a subtree in T' ending in the empty
clause, in which one parent of every resolution consists
of positive literals only. Consider the image of this
subtree in the tree T. There, every atom deriving from
the set px must clearly be negative (while all atoms
deriving from the set p2—since these were not changed—
will be positive). This image subtree in T therefore
provides a /^-deduction of the empty clause from S.

It may be noted that Px -deduction is the special case
of Pp-deduction, where the partition of the set of atoms
is into itself and the empty set; and that the number of
Pp-deduction types is 2", where n is the number of atoms
appearing in the clauses.

Some further theorems on unsatisfiable sets of clauses
Theorem 3

Any finite unsatisfiable set of clauses S not containing
the empty clause must contain at least one; positive
clause and at least one negative clause. (This theorem
is contained implicitly in Robinson's proof of Theorem 1.)

Proof:

Following Robinson we shall term a set of literals M
a model of a set of ground clauses, Sg, if M contains no
complementary pairs and shares at least one literal with
each clause of Sg. Then, clearly, Sg will be unsatisfiable
if and only if it has no model.

If S is unsatisfiable, then by Herbrand's theorem there
is a set of ground clauses Sg derivable from it, which is
unsatisfiable. If no clause of S is positive no clause of
Sg is positive, i.e. every clause of Sg contains at least one
negative literal. Therefore the set of all atoms appearing
in Sg, negated, would be a model and Sg would be
satisfiable.

Similarly, if no clause of S is negative, it would follow
that the set of all atoms in Sg, un-negated, would con-
stitute a model of Sg.

Hence the theorem follows.
Note that this theorem provides a sufficient condition,

which can be checked by mere inspection, for the satis-
fiability of a set of clauses, such as the set of axioms of a
theory. That is to say, if such a set does not contain
a positive clause or does not contain a negative clause
the set must be satisfiable.

Theorem 4
Let S be any finite unsatisfiable set of clauses not

containing the empty set, and let S' be the set that results
on any renaming. Then S' contains at least one positive
clause and one negative clause.

Proof:
Obviously re-naming does not affect the satisfiability

of the set of clauses. Hence the theorem follows from
Theorem 3.

This theorem provides an even more powerful suffi-
cient condition for the satisfiability of a set of clauses:
namely, if any renaming fails to produce either a positive
clause or a negative one the set is satisfiable.

The possibility of a proof procedure based on renaming
It would be very convenient if the converse of

Theorem 4 were true. This would mean that if a set 5
maintained the property of containing at least one
positive and one negative clause for every possible
renaming then it would be unsatisfiable. We would
then have a universally effective decision procedure; if
on all possible renamings—and there would for finite
sets of finite clauses be only a finite number of them—
the set retained a positive and a negative clause, our
theorem would be proved, and if it did not, then by
Theorem 4 it would be disproved. This would imply
that a recursive decision procedure was possible for the
predicate calculus—which we know by Church's
theorem not to be the case.

However, that a useful proof procedure may yet
possibly be based on renaming is suggested by the
following result:
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two:Theorem 5
Let Sg be a finite set of ground clauses not containing

the empty clause. If for every renaming of its literals
Sg retains at least one positive clause then it is unsatis-
fiable. This also holds if we substitute "negative" for
"positive".

Proof:
Suppose Sg were satisfiable. Then Sg has a model M.

Some of the atoms in M will in general be negated and
some not. Let us now apply a renaming which converts
all the un-negated atoms in M into negated ones, thus
transforming the set Sg into the renamed set Sg, say.
Since Sg has a model consisting entirely of negative
literals, every clause of Sg must have at least one negative
literal.

Hence we have the result that if Sg is satisfiable there
is a renaming under which no clause is positive. From
this it follows that if in every renaming some clause is
positive, then Sg is unsatisfiable.

The second part of the theorem can be proved by
applying a renaming which converts all the negated
atoms of M into un-negated ones.

It is instructive to note why when this theorem holds
for a set Sg of ground clauses it does not necessarily
hold for a set S of clauses from which Sg has been
derived by instantiation. Consider the following
example, in which S consists of a single clause and Sg of
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s = {P(x, a) v Q{y,Ky))\

Sg = {P(a,a) V Q{a,f(a))}

&{P(Aa),a) V Q(a,f(a))}

We see that while some of the renamings of Sg corre-
spond to renamings of S,
e.g. P(a, a) renamed P'{a, a) and P(j\a), a) renamed
P'(f(a), a), others do not,_
e.g. only P(a, a) renamed P'(a, a).

In fact (if for convenience we treat identity as a
renaming too) 5 has 22 = 4 renamings, while Sg has
23 = 8, and only 4 of the latter arise from the former.

Thus, in general, all possible renamings of a set 5 of
clauses, do not, by instantiation, generate all possible
renamings of a set of ground clauses Sg derived from it,
and for this reason Theorem 5 cannot be taken over to
sets of non-ground clauses.

Since, however, Theorem 4 obviously applies to ground
clauses too, sets of ground clauses can be tested defi-
nitively for satisfiability by renaming.

The possibility of a useful proof procedure arises if
one could design an algorithm, which—working directly
on a set 5 of clauses—would determine the effects of
renaming for all possible substitution instances, rather
in the way Robinson's unification algorithm (Robinson,
1965) effects all possible matchings of instances of clauses
without actually explicitly generating the instances.

Book Review
Journal of Differential Equations, Volume 1, Number 1, edited

by J. P. La Salle, 1965; 113 pages. (New York and
London: Academic Press, $9 annually).

The first paper (26 pages) by H. W. Knobloch is on compari-
son theorems for nonlinear second order differential equa-
tions. This is more difficult than the attractive Sturm's
theory on comparison and oscillation theorems for linear
second order differential equations, but some results are
obtained and the theory is applied to derive properties of the
trajectory of solutions of Van der Pol's equation, of the form
/ ' =f{y)y' — ^ in the (y,y) plane.

The second paper (12 pages) by George Hufford is on the
characteristic matrix of a matrix of differential operators.
A system of n linear partial differential equations in n depen-
dent variables and several independent variables leads to the
study of the n by n matrix A(D) whose elements a^D) are
polynomials in D, the vector whose components are the
partial differentiation operators with respect to the indepen-
dent variables. The principal part huiD) of a,/D) is the
homogeneous polynomial consisting of the terms of highest
order in a,j(D). The principal parts form the characteristic

matrix H(£>). This paper deals with various definitions of H
and its invariants under linear transformations of the depen-
dent variables.

The third paper (56 pages) by Kenneth L. Cooke is on the
condition of regular degeneration for singularly perturbed
linear differential-difference equations of the form eA(e)u +
Bu = v where A, B are difference-differential operators, e is the
perturbation parameter, and the order of A is higher than the
order of B. The behaviour of the perturbation leads to a study
of the perturbation of zeros of exponential polynomials.

The last paper (19 pages) by Paul Fife is on exterior
Dirichlet problems and an application to boundary layer
theory. This deals with parabolic partial differential equa-
tions where the solution is periodic in /, the boundary con-
ditions are specified on the boundary of a domain in the space
variables, and the solution is required outside this domain.
Solutions which remain bounded or tend to a limit as the
space variables tend to infinity are investigated, and the results
are applied to the Navier-Stokes and Prandtl problems.

I. M. KHABAZA
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