
An application of separable programming

By A. J. Akeroyd'

A method of solving a general nonlinear function of several variables within a constrained region
using an interpolation technique with separable programming is described, with reference to a
problem formulated by Box (1965).

Box (1965) describes a nonlinear programming problem
that arose in his work, for which he described two new
computational procedures. The problem is in fact
linear except for the presence of four product terms. It
may be of interest to point out that problems of this
type can be solved by an extension of linear pro-
gramming known as separable programming, and Box's
problem has been used to illustrate this. The paper
outlines the technique of separable programming and
the interpolation procedure associated with it in the
C-E-I-R mathematical programming code LP/90/94
for the IBM 7094 computer. The application of the
technique to Box's problem is then described.

Separable programming and interpolation
The method of separable programming was first

formulated by Miller (1963). It provides a simple
technique for handling arbitrary nonlinear functions of
single arguments in otherwise linear programming
problems—and can readily be adapted to handle product
terms.

Assume we have a variable z and a function f(z)
whose graph appears as in Fig. 1.

This curve can be replaced by a set of straight lines
defined by a finite number of points (in this example 8
points have been used).

Allowing the coordinates of P, to be (a,-, £>,) we can
introduce 8 new non-negative variables M, . . . w8 such
that

w, + . . . + w8 = l (2.1)

axux

bxux

asus = z

bsus = f t

(2.2)

(2.3)

The variables «, . . . w8 are called a group of special
variables, and in a particular problem each nonlinear
constraint has a group associated with it.

If I/J = 1 then u2 • • • us = 0 and z = a{, f(z) = b\,
the point Px. If u{ = i, u2 = i, then u3. . . «8 = 0
and z = i(a, + a2), j[

z) = K*i + b2), a point halfway
along the line P\P2. In this way, allowing two neigh-
bouring special variables to take non-zero values, we
can move along the set of lines PtP2, PjPy. • • / W
However, if two non-neighbouring special variables
take non-zero values we have an invalid point (e.g. if
"I = i, "3 = i we have a point midway along the line

Fig. 1

Separable programming is a modification to the
normal simplex method that restricts the choice of
variable to enter the basis, and thereby avoids having
any illegal combinations of the special variables.

In order to handle product terms by separable pro-
gramming we use the relationship

zxz2
+ ?

( Zl\ (2.4)

which converts a product of two linear variables to the
difference of two nonlinear functions of linear variables.

If we replace the right-hand side of equation (2.4)
by (M2 — v2) we have

and v =

If we can restrict each z, to lie between 0 and 1, it
follows that 0 < u < 1 and — ± < v < + }.

Thus we can handle a product term by introducing
two groups of special variables (M and v), each group
being defined by two equations, the first corresponding
to equation (2.1) and the second to equation (2.2).

For example, taking five equally spaced variables in
each group, we have

u2 u5 =

v i + v2 + v3 + «4 + v5 = 1

K»s) = **

(2.5)

(2-6)

(2.7)

(2-8)
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Separable programming

Interpolation

In order to get an accurate solution from a separable
programming problem it is necessary to specify a large
number of special variables, and this can considerably
slow down the speed with which the problem is solved.
This difficulty can be overcome, as suggested by Miller
(Miller, 1963), by starting with a few variables and,
when a solution is reached, generating further variables
in the region of this solution.

The interpolation agendum written by Mrs. P. Griffiths
for the C-E-I-R LP/90/94 system interpolates between
points P, and Pi+, by fitting a cubic to the points
P,_i, Pj, Pi+i and Pj+2 or by fitting a quadratic to
three of these points if one of the end points does not
exist. Rows corresponding to equations of the type (2.6)
are given special names and the program looks at each
of these rows. If one variable is in the basis (say the z'th),
it interpolates n equally spaced new variables between
the (i — l)th and the rth and another n new variables
between the ith and the (i + l)th, where n is a numerical
parameter specified on the agendum call card. If there
are two adjacent variables in the basis, it interpolates n
equally spaced new variables between them. If there
are two non-adjacent variables in the basis, it inter-
polates n variables in the interval spanned by them,
although this situation rarely occurs in practice. If
there are no variables in the basis, it ignores this group.
The entries in other rows are calculated as cubic functions
of the entries in the reference rows.

The use of interpolation to solve a problem

The example the author used is that described by Box
(Box, 1965), except that the function —/was minimized
rather than / maximized.

The problem was to minimize the function / subject
to the 8 constraints given below:

and the following constraints.must be satisfied:

0 < x,

l - 2 < x2< 2-4

20 < x3 < 60

9 < x4 < 9 • 3

6-5 < * 5 < 7-0

0 < x6 < 294000

0 < x1 < 294000

0 < xs < 277200.

The numerical values of the constants are specified in
the appendix to Box (1965). It is convenient to start by
reducing all product terms to products of variables lying
between 0 and 1. So we write;

&, + k2x2 + k3x3 + k4x4 + ksxs = c, + dxzx (3.10)

Xl=d2z2 (3.11)

y\ + yi + V3 = c3 + d3z3 (3.12)

k2Sx3 + k29x4 + k3Ox5 = c4 + d4z4 (3.13)

04^3 + 05J4 + 7840a6

— 50800a7x2 — 508a7x3 + k3l

+ k32x2 + fc33x3 + £34X4 + &35X5 = c5 + d5z5 (3.14)

where the c,- and d, are chosen so that all z, lie between
0 and 1. We then have;

k21x2

x6 = cxd2z2 + d^z^z-i, (3.15)

x7 = c3d2z2 + d3d2z3z2 (3.16)

xs = cAd2z2 + d4d2z4z2 + x6 + x7 (3.17)

/ = - c5d2z2 - d5d2z5z2 + 24345 - o,x6. (3.18)

b = x2 +001x3

-Vg == yKj ~\~ f^2^2 ~i ^3"^3 ~T~ K4X4 ~\~ t

yi =kb+ knx2 + Jfc8x3 + A:9x4 + Ar

sxs)x\

r- k,5x$

y-i = kl6 + fr17x2 + ^,8x3 + £,9x4 + k2Ox5

y4 = k2l + «22^2 "T" «23^3 "1" k24X4 -

*1 = (>•• + ^2 + ^ ) * l

f— ~ ifliy\ + 3̂̂ 2 + a4^3 + a5)U

I" ^25^5

- x6+ x7

+ 7840a6

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

- lOOOOOflo - 508006a7 + k3l + k32x2

+ 3̂3X3 + £34X4 + k^x^Xi + 24345 — O{X6

(3.9)

where x,, x2, x3, x4 and x5 are the independent variables

345

For each of the product terms (say ztz2) we have four
rows corresponding to equations (2.5), (2.6), (2.7) and
(2.8):

«t u2 «3 u4 u5 v{ v2 v3 v4 v5 z, z2

1 1 1 1 1 = 1

o +i +i +i i -i - i = o
1 1 1 1 1 --= 1

-i-io +i+i-i+i = o.

Equation (3.15) then becomes:

— (l/16)f2 — (1/16)^4—(1/4)t>j) + ctd2z2 — x6 = 0.

Similarly a further six sets of special variables and
their related equations are used to represent the three
remaining product terms.

Since the z, are confined to the range 0 < z, < 1 the
values of the c, and dt can be determined by calculating
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1st Interp.
2nd Interp.
3rd Interp.
4th Interp.
5th Interp.
6th Interp.
7th Interp.
8th Interp.
9th Interp.

/
5,007,517
5,326,545
5,226,302
5,251,280
5,293,116
5,284,811
5,280,189
5,280,342
5,280,335
5,280,336

7-30902
5-70859
5-30990
5-03160
4-57073
4-53681
4-53710
4-53743
4-53743
4-53743

X2

1-2
1-2
1-2

Separable programming

Table 1

Xi

6 0 0
60 0
6 0 0

1-60338 60 0
2-4
2-4
2-4

2-4
2-4
2-4

60 0
6 0 0
6 0 0
6 0 0

60 0
60 0

9-3

9-3
9-3
9-3
9-3

9-3
9-3
9-3
9-3

9-3

6-52841
6-94147

7-0
7 0
7 0
7-0

7 0
7 0
7 0
7 0

X6

38,444
64,999
69,887

71,783

75,118
75,831
75,580
75,570
75,570

75,570

Xl

240,848
209,110
204,103

201,993
198,612

197,896
198,148
198,157
198,157
198,157

277,200
277,200
277,200
277,200

277,200
277,200
277,200

277,200
277,200
277,200

TIME

0-37
0-72
1-07
1-46
1-89
2-26
2-59
2-92
3-25
3-85

NUMBER OF
ITERATIONS

50
64

69
85

109

115
115
115
115
115

the maximum and minimum of equations (3.10) to (3.14).
Because many of the coefficients are so large the rows
(3.3) to (3.6) and (3.10) to (3.14) were scaled by a factor
of 1000, and rows (3.15) to (3.18) by 10,000.

The problem has 40 rows and 68 vectors, the rows
being the 11 constraints for xt . . . xs, the 16 defining
the product terms, the 4 (including the functional) con-
taining the product terms, the 5 defining the z, and the
4 defining yt . . . j>4. Many of the variables can be
eliminated by substitution but it is not worth the effort
in a problem as small as this.

Table 1 show the results obtained. In all cases the
parameter n (the number of new variables interpolated)
was 3. The two end columns show the time in minutes
and the number of simplex iterations from the start of
the run.

The work took four minutes on an IBM 7094 Mark II
computer, and it cannot be claimed that this is parti-
cularly fast. Dr. McCormick reports in a private com-
munication that he has solved the same problem in
about 30 seconds on an IBM 7040 computer using the

method described by Fiacco and McCormick (1964).
However, it should be pointed out that separable pro-
gramming is a convenient general method of dealing
with nonlinearities in an otherwise linear programming
problem, and has the important advantage over other
apparently more general methods of constrained opti-
mization that there is no real limit to the number of
linear variables that can be represented: typical real
separable programming problems have a few hundred
such variables. Also the LP/90/94 system is most effi-
cient on larger problems—with small problems a large
proportion of the total time is spent in noniterative
routines.
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