The classification of a set of elements
with respect to a set of properties

By Paul Constantinescu*

The paper sets up a formal mathematical scheme to describe the relations amongst a set of
elements which may have any of a number of properties in common. The method uses graphs and
trees and their matrix representation. The idea of clustering is developed with a note on some
problems which have been solved with a general purpose computer program. There is an indication
of the possibility of applying the analysis to problems in many different fields.

Let 4/ =M, M,,... . M) This matrix is a symmetrical one (p; = p;;) and
pyel, = [0, 1, 2,...,n], where p;; = 0. We can asso-
; ciate with the matnx M,,, one graph G using n + 1 levels
= (P, P,,..., P, . ‘(level (0), level (1), . . ., level (m)) as in Fig. 1. For each

a set of elements and

a set of properties.

One element M, e# can have, or cannot have, a
property P,eZ. In order to describe this fact for every
doublet M; and P,, we shall consider a matrix My with m level (1)
rows and » columns
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......................................
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where the o are 0 or 1 (o;,el,): Fig. 1

{ 0 if M, has not the property Py,
X =

1 if M, has the property P,. doublet of elements (M;, M;) we draw the branches
wh:ch go out from M,; and M respectively and which
“meet each other at the level p;; = d(M;, M), so deter-
a; = (o1, %, oy Xin) » - . Mining a vertex M;; on this level (Fig. 1).

By drawing, for every doublet (M;, M), the corre-
.sponding vertex we obtain the graph G associated with
o oy = (o) + 1,0y 0+ ) the matrix M,. We shall call the elements of .# initial

A, = (e Aa,) vertices of the graph G. On this graph we can see on
! il e e o> A%inds every level the number of doublets of elements of .#

We consider the linear space of the vectors

for which are defined:

“+4 being the sum modulo two. between which the distance is the number associated
In this space we consider the distance with the respective level.

If all the doublets of elements M ity - - ., My are con-

d(e;, &;) = py; nected by branches on the level (r) we shall consider in

where p;; represents the number of unity-components of the graph G only one vertex M, . Which is con-

the vector -o; + «;, that is the weight of the vector nected by branches with the initial vertices M, M;,, . . .,

o; + a;. M;, and which represents all the doublets of elements

We can describe the distances for all the couples of M, ..., M, (Fig. 2).
vectors by means of the matrix M, of order m:

Pir Pr2---Pim Definition 1

""""" We say that the level (p) is superior to the level (r) if
Myg= |- . P < r(p, rel) (or r is inferior to p). Accordingly, with

""""" Definition 1 we shall call the vertices on the most inferior

Pmt Pm2 - -« Pmm level final vertices.
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Definition 2

We shall call a graph G associated with a matrix M,
a tree if it has only one final vertex (on the last level (n)
or on a superior one) and if from each vertex (including
the initial vertices) only one branch goes out on the
inferior levels.

For big m (number of elements of .#) we shall use
the following representation G’ of the graph G : InG’
we shall represent only the vertices of G (excluding the
branches). Each vertex represents a subset M, ..., M,
of elements of .#, or we can say, all the doublets of
elements M;, ..., M.
Definition 3

A representation G’ of the graph G is a tree-repre-
sentation if it has only one final vertex (on the last level
(n) or on a superior one) and if on each level it has only
vertices M,/ ; for which the sets of indices
J; = (..., i,) are disjoint.

Definition 4

We shall call absorption of any vertices from the set
of vertices MY ... iy, (i,,..., i) =J; by the vertex
M7  _,where g =max (g;) and (i}, ..., }) = J = U;J;,
the transformation of the representation G’ into the
representation G” in which the vertices M .. or
only a part of these vertices, are replaced by the vertex
Mi|q...i1'

Remark 1

Any vertices from the set of vertices M’/ ;. can
be absorbed by M , (see Definition 4) if, and only
if on the levels superior to g there are all the vertices
M@ . by which all the doublets of elements
M;, ..., M, are represented.

Remark 2

Particularly, by absorption we can get from the
vertices—placed on the same level——which represent all
the doublets of the elements M, ..., M;, one vertex
M;, . i (see Fig. 2).

Definition 5
A set of initial elements M; ..., M;, (1 < m) which
are represented in a tree or a tree representation by

E

level (0) vevieigoeeemeerogeeeses €eecteagecararanonas .

Fig. 3

M{,;, ., (this vertex may be obtained by absorption)

is called a cluster of elements of .#.
We shall prove the following:

Lemma

A tree-representation G’ is a representation of the
tree G and reciprocally.

Proof

We must prove that if G’ is a tree-representation then
G is a tree. In fact, if on each level the subsets J; are
disjoint, then from each vertex on the superior levels
only one branch is going on this inferior one. The
converse is obvious.

Therefore with respect to the trees’ or the tree-
representations’ conception the clusters on a given level
of the set # are disjoint. The set of the clusters of .#
represents the classification of the set .# with respect to
the properties-set 2.

Since in the general case G (G’) is not a tree (tree-
representation), in order to obtain a classification of the
elements of a set.# we need to associate with the graph
of the matrix M,, a tree or tree-representation.

Definition 6

A tree (tree representation) as in Fig. 3 is a trivial ftmee
(tree-representation)

Let us consider a set of elements .# with n1 elements.
We shall prove the following:

Theorem

A representation can be transformed in a non-trivial
tree-representation if and only if there are at least two
vertices for which the sets of indices J and J’ are disjoint,
where JUJ'=1,2,..., m, and from which at least one
is not on the last level.

Proof
The condition is sufficient.

A. Let M, be the vertex which represents the elements
having the indices in J; let M; and M, be on the
level r and r’, respectively (r <r’). Let us con-
sider M;. and M,.. on the level p < r for which
J*n I =k,

(@) If J* U J**CJ then M;. and Mj.. can be absorbed
by M;.

GB)I1IfJ* ¢ Jand {J** — k} C J' then M;. and M,..
can be absorbed by the vertex M, ;.
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Y, 2315678
Fig. 4.

Analogously we can reason in the other cases. There-
fore, if the condition of the Theorem is fulfilled then on
each level we have only vertices according to the
Definition 3.

B. We must prove that there is only one final vertex.
In fact, if we have—for instance—two final vertices
M3 and M, for which «, BeJ and y, 8¢J’ then both
can be absorbed by M,,;. We can reason analogously
in the other cases of two or more final points.

The condition is necessary.

Actually, if the condition is not fulfilled we can
obtain a trivial tree-representation (see Fig. 3), or there
is at least one vertex from which go out two branches
to the vertices on the inferior levels.

The ““binary’ case we considered so far is not material ;
all these considerations are valid if the elements of the
matrix M, are integers. Any suitable distances can be

chosen too.
Example. Let
1 0 1 0 1 1 17
1101110
0101100
|1 010011
Mo=(o 111110
1 111100
0010011
|01 1 0 1 1 1]
The matrix M, is:
[0 4 6 1 4 4 2 27
4 0 25 2 2 6 4
6 20 7 2 2 6 4
1 5705513
Ma=14 22502 4 2
4 2 2 52 0 6 4
26 61 46 02
|2 4 4 3 2 4 2 0]
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The representation G’ is the following:

level

1 M, M,

(2) Mz; M5 Mjs MigMpgMsg M7 M3 Msg Myg
3 Mg

@ M;; M;s MM Ms; M3 Mgg

) M4 Mys Mys

©) M,; M;; Mg M,,

@) M,

By absorptions we obtain, e.g. the tree from Fig. 4.

The algorithm which we can deduce from the above
considerations, in order to solve a given problem of
classification of a set .# in respect to a set of properties
2 needs the following steps:

1. The calculation of the matrix M, and of the graph G
Jrom the given matrix M,

In any of the ALGOL programs for clustering (Atlas
Laboratory, Chilton, Didcot, Berks., or Computing
Center—University of Bucharest, Rumania) we describe
the graph G by two arrays G,[i,j] and G,[i, j] where i
represents the levels (i = 1, ..., n) and j represents the
first (in G,) respectively, the second (in G,) vertex of
every couple on the level i.

For instance, in the example considered above we
have:

G,: 14 G,: 47
1122233557 7835656688
4 8
1112356 - 2568878
244 456
1236 3777
3 4

2. The calculation of the trees associated with the graph G

In order to obtain all the trees (tree-representations)
which are associated with the graph G we shall describe
on every level all the subsets of .# which fulfil the
following conditions:

(x) The subsets are obtained by absorptions (pro-
cedure TRIANG—Fig. 5).

(B) On every level we write those subsets which are
not included in the subsets on the superior levels
(including the preceding subsets on the level in
discussion), (procedure INCLUD—Fig. 5).

According to the definition of the absorption, in order
to get a vertex M;, ...y, i.e. a subset (i, ..., i) on the

¥202 Iudy 61 uo 1senb Aq 818001/2SE/P/8/8101 e/ |ulwoo/woo dno-ojwsepeoe//:sdiy wolj papeojumoq



g‘rgl

No

y
Procedure

FRESS

Classification

Block scheme (Prcyram Cluster 3)

K] « By number of elements in fhe k-t now ix Graud Ga,
i[f]- » 2 » 2 Yooy {-,g "3 7'3’

Q1= 5" s of Me saliel RES,pi4T,

dis7 - He wrckiuméer of elnerds (i Ke 6-K row i /i(/-('hd’/a(]/‘n
]. - ”((JCP)"GS Hd row-rxdex ix '75.,

[~ Kefinl clewedd i Ko iabie? RLGGL]T,

Fodmor 3m ole, LiO MCXY,

P

7.1

=T and

2 f‘,;/]‘

No

Frocedure TA’IHNg

!1&_14,!

1

Procedure INCLWD

&l

I,
4
Print

R [blf) y]

¥202 Iudy 61 uo 1senb Aq 818001/2SE/P/8/8101 e/ |ulwoo/woo dno-ojwsepeoe//:sdiy wolj papeojumoq



Classification

level j, we must verify that on the levels superior to the
levels j (including j) there are all the couples (i}, i),
(ila i3)’ e ey (ila ik)’ (i2’ i3)a LR (i2a ik)’ cem (ik—l’ Ik)
For this purpose we consider the arrays T\[i] and
T5[i,j]. In Ty, i describes the index for all the couples
(having i as first index) which are on the first b levels in
G, and G,; in T, j describes the corresponding indices
from G,.
For instance, in the example mentioned, if b = 4 we
have:
T,: T,: 245678
3568
78
678
8
8

N AV AN -

In order to fulfil the condition («) we can remark that
the absorption takes place if and only if all the elements
on each parallel to the first diagonal in T, are equal
(procedure TRIANG).

It can be illustrated if we consider for instance the
couples (1,2), (1,3), (1,4), (1,5), (2,3), (2,49, (2,9,
(3,4), (3,5), (4,5) and the corresponding arrays T,
and T3:

T: 7,:

E-SRVAT S ]
wn b whN
U AW

In order to fulfil the condition (B) we verify that every
subset which satisfies the condition («) is not included
in a preceding one. Finally, we get a pattern which
contains all the trees we can associate with the graph G
(the subsets on the level b are called R(b, i, ) in Fig. 5).

In the example considered above we get the following
pattern:

Level (1) (14), (47)
(2) (147), (178), (2356), (58)
() (478)
(4) -(12568); (23568), (578)
(5) (124568), (14578)
(6) (1235678), (145678), (1245678)
(7) (12345678).

The tree considered as an example above (Fig. 4) is
shown up by the tree-representation which produces the
undeilined clusters. We notice, for instance, that
(12345678) = (1478) v (2356) satisfies the condition of
the Theorem.

According to the Theorem given above and other
supplementary considerations connected with the physical
character of the problem (technology, economy, biology,
etc.) we can select from the final pattern the particular
tree-representations which produces the clusters in 4.
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Since such problems of classification of the infor-
matjon appear in many fields, this way of producing the
final pattern seems to the author to be suitable in order
to be able both to solve a large class of problems and
to create the possibility of interfering with the supple-
mentary conditions required by each particular problem.

Certainly such supplementary conditions can be for-
mulated even for the algorithm which, with the corre-
sponding modifications, can lead, for instance to,
instead of the pattern, only one tree-representation.

As a result of such conditions, five variants of the basic
algorithm described above were written:

Cluster 1. Produces almost all the subsets providing
almost all the clusters (trees).- Recommended
in the range m < 30. We must note that for
instance in the case of m = 30 we can get
about 200 subsets on one level in the final
pattern.

In order to reduce the number of subsets but to maintain,
as much as possible, the same number of trees furnished
by the final pattern, the following three variants can be
used:

Cluster 2. Produces on each level at the most m subsets
(for each possible initial element in each
subset, at the most 1 subset). Recommended
in the range m < 50. The decreasing of the
number of trees furnished by the final pattern
is much smaller than the decreasing of the
number of subsets.

Cluster 3. From the subsets which can be produced by
Cluster 2, it keeps on each level only the
subsets which are “partial disjoint” (every
initial element is not in the precedent subsets
on the respective level). Recommended in
range m << 50. The block scheme in the case

of Cluster 3 is given in Fig. 5.

Cluster 4. The subsets in the final pattern are on every
level ‘“‘almost disjoint” (excluding the last
element in every subset, the subsets on a given
level are disjoint). Recommended in the

range m << 100.

In order to get a satisfactory number of trees from the
final pattern, the number of required levels is in general
much smaller than n. In fact, if, for instance, n = 100,
then for about 10 levels (recommendably in the range
between levels 40 and 50) we can get a pattern furnishing
enough trees which would satisfy the most exacting
researcher.

Clusters 1, 2, 3, 4 were used for different problems
from Psychology, Biology, Electrical Designing, etc.
In the ranges mentioned above, every problem could be
solved at the most in 15 minutes on Atlas. For instance,
a problem with m = 30 and n = 70 is solved by Cluster 3
in 2 minutes if we ask for the pattern with about 20 levels,
which provides enough information in order to get a
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rich set of trees. For m = 50, Cluster 4 gives about (¢) Generally speaking, the Cluster Analysis of the
20 levels in 4 minutes. type described above, and Factor Analysis can be con-
In order to deal with bigger amounts of data (m < 1000) sidered complementary. It stems especially from the
another variant has been provided: fact that, in the case of Cluster Analysis, the number of
properties (n) practically does not affect the computing
Cluster 5. Produces subsets only on a certain level in time, and therefore Cluster Analysis can be used for the
every case of Cluster 1, 2, 3, or 4. We can problems with which Factor Analysis does not deal
get some nodes of the trees containing the easily; and conversely. A more detailed discussion
clusters if we apply Cluster 5 for certain levels. concerning this comparison is developed in Con-

In this way we can use even Cluster 1 for a stantinescu and Stringer.
bigger m if we are interested in overlapping (d) A way which might blend some advantages from
subsets on a given level. both Cluster and Factor Analysis seems to be that
indicated in Howard (1964). But although conditions
For every variant, ALGOL programs depending on for keeping the configuration of the points within a
the initial data were elaborated: for integral or binary sphere, during suitable transformations (for instance,
numbers, in - both cases, when all the elements of the projecting successively the initial configuration in con-
matrix M, are known or not. In the case of incomplete secutive subspaces), are increasingly available, the
data some solutions are considered in Constantinescu problem of rejecting artificial similarities, produced by
and Stringer. : these transformations, seems to lead to conditions too
The preparation of the matrices of distances M, in stringent to be effective. Nevertheless, at least for some
the sense considered by Bonner (1964) is recommended classes of problems, such conditions might be conceived.
in the case of Clusters 3, 4. (¢) The rich list of applications, “mechanical trans-
A more complete description of the algorithm, illus- lations, psychology, information retrieval, artificial
trated in the cases of Cluster 1 and Cluster 4, is given in intelligence, semantics, determination of species, scientific
Constantinescu. classification, general systems, architectural planning

philosophy and the theory of art generally,” given in (1)
could, however, be extended.

Conclusions For instance, we can add certain more technical appli-
(a) 1t appears that the definition of Cluster introduced cations such as: the synthesis of computers or more
in this paper fits a larger class of problems than the generally the synthesis of finite automata (the covering
previous concepts. Moreover, it contains that known of a graph with a set of subgraphs as a step in the
by the author as a particular case: for instance, the synthesis), classification of patents, classification of
clusters conceived by Bonner (1964) as “maximal com- different technical procedures, problems of prognosis in
plete subgraphs of the similarity matrix graph™ can be methereology, economical planning, theory of codes, etc.
obtained from Definition 5 when considering only the I should like to express my gratitude to Mr. Alex Bell
elements which are at distance 1 (level 1). (Atlas Laboratory, S.R.C.) for his constructive remarks
(b) This point of view for clustering leads to an concerning the programs in Atlas ALGOL.
algorithm which seems to be versatile enough even if we My debt to Dr. J. Howlett and Dr. R. Churchhouse
take into account only the five variants operating in (Atlas Laboratory, S.R.C.) for their help in all spheres
the range 1 < m < 1000. But further variants might of my work -at the Laboratory is considerable and I owe
be available. them much for their assistance.
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