
Necessary conditions for a minimax approximation
By A. R. Curtis and M. J. D. Powell*

^(jr,X*,X*,.. . , X£) is a minimax approximation to/(x) if the values ~kt = X*, i = 1 to n of the
parameters are such that the maximum value (over x) of \f(x) — <£(x,X)| is minimized. Rice
(1960) has established a number of conditions characterizing minimax approximations, but these
apply only to a limited class of approximating functions, <f>{x, X). A simple example serves to
illustrate that more general conditions are required—some are derived in this paper.

1. Introduction
Rice (1964) has provided a valuable survey of the current
theory of minimax approximations in the event that the
approximating functions <f>(x, A,, A2, . . ., An) take the

n

form 2 A,-<£,•(*). It is known that if the functions <f>j(x)
form a Chebyshev set, the best approximation to a con-
tinuous function,/(x), over a closed interval, a < x < b,
is characterized by the maximum error occurring at
(n + 1) points, the sign of the error alternating. Rice
(I960) has extended this theorem to include non-linear
dependence of (f>(x, X) on X by identifying conditions on
<f>{x, X) which are necessary and sufficient to ensure that
the same characterization of best approximations holds
for all continuous/(x).

Unfortunately there are many useful choices of <f>(x, X)
which do not fulfil Rice's conditions, notably rational
approximations

= I

In this case the defect, d, has to be included in Chebyshev's
characterization theorem (Achieser, 1956). An example
of another exception is provided by the approximation
of x2 by A,* + A2e* over 0 < x < 2. This will be con-
sidered in some detail. It may be verified that the error
function of the approximation

x2 at 8 -465x- 2-0239^

takes its maximum absolute value at the three points
x = 0, x = 1 • 1227 and x = 2, the error at these points
being +2-0239, —2-0239 and +2-0239, respectively.
However, note that because (e* — 3 • 5x), for example,
has the same sign oscillation properties as the maximum
error, the approximation can be improved by subtracting
a positive multiple of ie* — 3-5x). In fact the best
approximation is

x2 x 0-1842* + 0-4186e*,

the maximum absolute error is 0-5382, and this error
occurs at just the two points x = 0-4064 and x = 2.
Rice's theorems are not applicable because (e* — 3-5*)
has two zeros in the range 0 < x < 2, but the simplicity
of this example suggests that more general characterization
theorems are of importance.

In this paper methods for finding minimax approxi-
mations are not considered. It is assumed that the best
values of the parameters have been determined, and
Theorem 1 states a necessary condition for a best approxi-
mation when the maximum error occurs at fewer than
(n + 1) points. Theorem 2 relates the signs of the error
extrema to the signs of the determinants in the event
that the maximum error does occur at (« + 1) points,
a best approximation does not necessarily possess the
property that the signs of the maximum errors alternate.

2. Notation
The range of x over which the approximation is to

apply is called 5. L is reserved for the range of the
parameters.

The maximum error of an approximation is called
h(X), so that

:)-<£(*, X)|. (1)
xeS

The parameters of a minimax approximation are denoted
by X*. h(X*) is therefore the greatest lower bound of
h(X)—it is abbreviated by h*.

The values of x at which the maximum error of the
approximation <f>(x, X*) occurs are called £,, | 2 , . . ., | r .
For each f,• a number s, is defined to be ±1 according
to the sign of the error. Therefore

/(£,) - <Kt,, X*) = s,h*; i = 1, 2, . . ., r. (2)

In the theorems the derivatives of <f>(x, X) with respect
to the parameters are required at £,, £2> • • •> €r- They
are denoted by

D is the r x n matrix whose elements are given by (3).
In the event that r = n + 1, square matrices of order

n, A,, A2 Ar, are defined. A* is the matrix obtained
by deleting the A:th row of D. pk is reserved for the
determinant of Ak multiplied by (— 1)*. An important
consequence of this definition is that

= 0 ; ; = 1,2, (4)
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Minimax approximation

3. The theorems
The assumptions made in proving the theorems are

stated in Section 4. In Section 8 some will be relaxed.

Theorem 1. The rank of D is less than r.

Theorem 2. If r = n + 1, the signs of su s2, • •., sr are
all the same as or are all opposite to the
signs of pu p2 o,.

4. Assumptions made in proving the theorems
For reference purposes the five assumptions made are

distinguished by letters. Most important is

(a) A best approximation <j>(x, X*) exists.
This can be guaranteed if L is closed and bounded"

and <f>(x, X) is continuous in X.

(b) S is composed of a finite number of closed intervals
of real numbers and a finite number of discrete
real points.

(c) In each closed interval of S, both/(;c) and <j>(x, X*)
are continuous functions of x.

(b) and (c) will be relaxed in Section 8.
(d) X* is an interior point of L.

(d) rules out some cases covered by the comment on (a)
above.

(e) In a neighbourhood of X* and for all xeS, the
derivatives

^r-</>(x, X), i = 1, 2,. .., n, are uniformly continuous

functions of x and X.
From (d) and (e) it follows that numbers u> and £2

exist such that, for all X satisfying ||X — X*|| < a> and
for all xeS, XeL and

<a (5)

5. Proof of Theorem 1
Since D is an r x n matrix, Theorem 1 is true if r

exceeds n. Therefore it need only be proved for r < n
and, in this case, it will be shown that assuming D is of
rank r leads to a contradiction.

If D is of rank r < n, a vector X* may be found such
that

S DyAJ = Sl; i = 1, 2 , . . ., r. (6)

The contradiction is that the maximum error of the
approximation <f>(x, X* + /AX*) is less than h* for suffi-
ciently small positive values of p. The error function of
this approximation is called

e(x, & = f(x) - 4(x, X*

Note that, in virtue of (6),

r <> 1
:T— e(ci, u)\ = — 5,; i = 1, 2 , . . . , r , ' (8)

so that the error magnitudes at the points £, are initially
decreasing functions of y,.

For the proof S is divided into two parts, RNand TN.
TN contains £(, £2, • • •> £ran£l KN^ closed and bounded.
We show that \e(x, y.)\ may be made less than h* in
each part; the method of proof depends on whether x is
in RN or TN. For the present purpose, N may be any
fixed number in the range 0 < N < 1; it will be given a
specific value in the proof of Theorem 2.

x is defined to belong to TN if all the following three
conditions are satisfied:

(i) \e(x,O)\>ih*

> N

r <> i
(iii) the sign of —̂ e(x, y) is opposite to the

sign of e(x, 0).
Otherwise xeRN. That £,, £2,. . ., gr all belong to TN

follows from (2), (7) and (8). That RN is closed and
bounded follows from assumption (b) and the strict
inequalities in conditions (i) and (ii) above.

Remembering assumption (c),

max \e{x, 0)| = hR, say,

is attained. Therefore

By (5) and (7), provided

h*.

<WI|xt||,
n

< Q S |AJ|

(9)

(10)

OD= M, say.

Hence, provided \y\ is restricted to be less than both
a>/||Xt|| and (h* - hR)/M, it will follow that

max \e(x, /x)| < h*. (12)

Because of assumption (e) and by condition (ii) on
TN, a positive number m, not exceeding oj/||Xt||, may
be chosen such that, provided xeTN and \n\ < m,

> iN- (13)

Where (13) is satisfied e(x, y) is a strictly monotonic
function of /x, as is \e(x, p)\ provided that e{x, /x)
remains non-zero. Condition (i) of TN ensures that
e{x, /x) is non-zero if \y.\ < \h*lM. Further, condition
(iii) of TN ensures that, in a neighbourhood of /x = 0,
\e(x, /x)| is a strictly decreasing function of /*. Hence,
provided \y.\ < m, |/x| < \h*jM and /x > 0,

max \e(x, p)\ <h*. (14)

(12) and (14) provide the required contradiction, so it
must be concluded that it is impossible to solve (6), and
the rank of D is less than r.
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6. Proof of Theorem 2
It is proved that the signs of st, s2, • • -, sr are all the

same as or are all opposite to the signs of p , , p2, . . ., p r

by showing that, for all k, pksk has the sign of >

Minimax approximation

7. An application of the theorems
The two theorems are of use in studying the example

of Section 1, namely

x2 a A,* + \2e
x.

o = 2

It will be apparent that, unless p, = p2 = . . . = pr = 0,
CT is non-zero because in fact a stricter result is proved.
It is that if both pksk and (a — pksk) are non-zero, they
have the same sign. Should pk be zero, its sign must be
interpreted favourably. Should (a — pksk) be zero,
a = Pksk.

Again the proof depends on a contradiction, so it is
supposed that, for some k, pksk and (o- — pksk) are non-
zero and have opposite signs. As pk is not zero, \ is
non-singular, and Xf is defined by the equations

(15) The approximation 8 • 4656* — 2 • 0239e* has r = n + 1
and

£, = 0-0000, £2 = 1 • 1227, £3 = 2-0000,

= 5, (16)

where the transpose of 5 is

(s{, S2, . • . , Sfc-1> Sjc- 1> • • -J Sr)-

e(x, /J.) is defined as in equation (7), but equation (8)
becomes

k - 1, k + 1 , . . .,r

(17)

(18)

From equation (17)

Hence, using (4), (15) and (16),

= 2 Pr-yi
;=i

= o - Pksk. (19)

Therefore, by the hypothesis on pksk and (a — pksk),
fd 1

r— e(£k. p.) is non-zero, and its sign is opposite
L°M J;JL=O
to that of sk. Hence, choosing N to be the smaller of

>r d l |
\ and \ ;— e ( ^ , /x) ,, and defining TN as before,

" \ L M J [i=o;
again £,, ^2, . . ., £r all belong to T1 .̂ Thus a contra-
diction results so Theorem 2 must hold.

and = 2-1495, p2 = 20000, p3 = - 1 • 1227.

Therefore, by Theorem 2, it is not a best approximation.
On the other hand 0-1842* + 0-4186e* has r = 2 so,

if it is a best approximation, Theorem 1 should not be
trivially satisfied. Since

/
V

0-4064 l-5014\
2-0000 7-3891/

(within rounding errors), its rank is unity as predicted
by the theorem.

8. Extensions to the theorems
It has been stated that assumptions (b) and (c) of

Section 4 may be relaxed. Their only purpose is to
prove (10), which was deduced from the fact that RN is
closed and bounded. Otherwise, to prove the theorems,
it is necessary to define hR as the least upper bound of
\e{x, 0)| as x ranges over RN, and to establish that (10)
still holds.

Without assumptions (b) and (c), there may be a set
of points of S, Xi, x2, . . . such that

lim \e(x,, 0)| = h*.

Further, an infinite number of members of the set may
not belong to 7^ because of conditions (ii) and/or (iii).
In this case the proof breaks down, and it is necessary
to restate the theorems in a way which includes limit
points of such sets among f l5 f2,. . ., £r.

Such sets necessarily have limit points only if S is
finite, so this assumption will be made in place of (b)
and (c).

Suppose £,, £2, . . ., ip are the points of 5 at which
the maximum error of </>(*,X*) is attained; p may be
zero. As many points as possible are appended to this
set, but the additions must comply with the following
rules. Suppose the current set is £ b £2, .
added if there exists a sequence xn, xi2,. .

x^S, j= 1,2, .

lim xit = £i
I—*x

and lim {fix,,) - <f>(xn, X*)} = s,h*,

such that
£,- is

(20)

(21)

(22)

where again si• = ± 1. Further, there must not existy < i
such that £i = £j and s, = Sj. The number of points
when no more can be appended is called r.
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Minimax approximation

For the extended set £,, £2< • • •» £«•> t n e theorems do
not depend on assumptions (b) and (c). Note that
assumption (e) is required to ensure that the matrix
elements Di} are well defined. To prove the theorems
it is straightforward to show that for each sequence
xn,xi2, • • • there exists tt such that xu belongs to TN
for ally > /,-. Should some £, = gJt s, # Sj, the theorems
are trivial.

As an example consider the best linear approximation
to the hypothetical function

f(x) = 1 + x, x > 0

Ax) = h

Ax) = o,

Ax) = -x,

x < 0 and irrational

x < 0 and rational,

where S is composed of the two intervals — 1 < x <
and 0 < x < 1. The best approximation is

/(*)« tfx,\*) = ix + 1

-i

and it has a maximum error of + | attained only at
x = — 1. However, as well as £, = — 1, the points
£2 = — \ and £3 = 1 must be included because

lim {/(*)-<£(*, X*)} = - 1

x < — i and irrational

and lim {J{x) — <f>(x, X*)} = + | .
*->- i
JC< 1

Because the approximation is linear, Theorems 1 and 2
state the well-known sign-alternation properties of the
maximum error, and this is confirmed by the example.

There are many practical examples in which an
approximation is required over an infinite range, so it
is of interest to consider imposing no conditions on S.
Obviously none are necessary if the infinite range can be
transformed to a finite one in a way which preserves the
remaining assumptions. Only (e) is dependent on such
a transformation, so no restrictions need be imposed on
the range of the approximation if a change of variables
can be found such that S becomes finite and such that

-rv- <p(x, X), / — 1,2,

are uniformly continuous functions of the new variable
over the new range. For this to be the case it is necessary
that

lim •<Kx,» (23)

exist. Even if (23) does not hold, the theorems still apply
if there exists a number H and a number 77 < h* such
that

\Ax) - <Kx,**)\ < V (24)
provided that xeS and |x| > H, because this is the con-
dition that the best approximation over 5 is also the
best approximation over a finite range contained in 5.

The last extension may be the most important. It is
that the assumption that S is one-dimensional has not
been used and, from the beginning, the analysis could
have been applied to approximations to functions of
several variables.

9. Conclusion
The theorems of this paper serve in two ways which

are illustrated by the example of Section 7. First,
Theorem 2 may reject an approximation which appears
to minimize the maximum error, but does not.. Secondly,
if by some means an approximation has been obtained
whose error attains its maximum value at fewer than
(« + 1) points, Theorem 1 may reject it. If it fails to
do so, this lends support to the view that a best approxi-
mation has been found, without unfortunately being
conclusive. A general condition depending on local
properties can presumably never be sufficient.

It is hoped that the most useful view has been taken
on the conditions that the functions have to satisfy.
Usually <f>(x, X) is easy to calculate, so seldom are its
conditions restrictive. On the other hand,/(x) might be
the result of experimental observations or it might not
be feasible to calculate it to high accuracy. Further it
might only be obtainable for a limited range of values of
x, so the fact that it and 5 are virtually unrestricted is
important.
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