
Closed rational integration formulas'

By Henry C. Thacher, Jr.f

Closed integration formulas are investigated which are exact when the integral is a rational function.
The two-point formula is analogous to the trapezoidal rule, with the geometric replacing the
arithmetic mean of the derivatives.

1. Introduction
In integrating the ordinary differential equation

y'(x)=f(x,y) (1.1)

by predictor-corrector methods, the typical corrector
formula is of the form

y(xk) = £ «,y{xk.i) + £ p,y(xk_,) (1.2)
1=1 ;=o

and is thus a closed-type quadrature formula. The
coefficients a; and j8, are customarily determined partly
by requiring that (1.2) be exact for polynomials of
moderately high degree, and partly by stability
considerations.

It is well known that many functions, particularly near
a singularity in the complex plane, are far better repre-
sented by ratios of polynomials than they are by poly-
nomials with the same number of parameters. Rational
osculating interpolation algorithms have been investi-
gated by Salzer (1962) and by Thacher (1961). Their
algorithms, however, require that the value of the
function be given at each point where a derivative is
specified. They thus lead only to open formulas,
valuable only as predictors.

It is the purpose of this paper to investigate a class of
closed integration formulas, which are exact when the
integral is a rational function. In Section 2, the problem
is stated in its most general form, with arbitrary basis
functions and spacing of base points. The only possible
solution is shown to be one of two roots of a quadratic
equation, the coefficients of which are rather complicated
determinants. In Section 3, the problem is specialized
to equally-spaced base points, and polynomial basis
functions. In Section 4, the two-point case is investi-
gated in detail, and is shown to lead to a formula
analogous to the trapezoidal rule with the arithmetic
mean of the derivatives replaced by the geometric mean.
The formula is solved explicitly for the differential
equations satisfied by several common functions, and is
found to give considerably more accurate results than
the three-term truncated Taylor series or the trapezoidal
rule. Finally, in Section 5, the three-point formula is
derived, and the conditions under which it fails are
determined.

* Work supported by the U.S. Atomic Energy Commission.

2. The general problem

Let n + 1 distinct base points, x,(i — 0, 1, . . ., n), n
function values, v,, (i = 1, . . ., «), and n + 1 derivative
values, f,(i = 0, 1, . . ., n) be given. Let R(x) be a speci-
fied generalized rational function with m — /LA + v + 2
parameters {pk,qk}:

/?(*) =
P(x) P

k = 0 (2.1)

We wish to find an expression for y0 = R(x0) which is
valid whenever the y-, and / , are, respectively, the values
of a rational function of the form (2.1) at x,, and of its
derivative, i.e. when, for some set of {pk, qk),

(2.2)y, = R(x,)

Provided that g(x,) # 0, (2.2) leads to the condition

Q(xi)yi = />(*,) (2.4)

2yMxi)9k - Z4>k(xt)Pk = 0. (2-5)

Similarly, provided in addition that />(*,) ^ 0,

P(x,)R'(x,) = *(*,)/"(*/) - *2(*,)<2'(*,) (2-6)

or, using (2.2) and (2.3),

or

fMxfa + ZfMxdPt - ZyMx,)pk = 0. (2.7)
For each / such that y-, (and so P(x,) as well) does not

vanish, adding f, times (2.5) to (2.7) and dividing by y,
leads to:

Z[yMx,) +fMxt)]9k - £&(*/)/>* = 0- (2-8)

For the / for which y, = 0, />(*,) = 0, and

/, = R\x,) = nxMQLx,) (2.9)

which is equivalent to (2.8).
Equations (2.5) and (2.8) form a system of In + 2

homogeneous equations for the m quantities pk and qk.
Since we are restricting ourselves to data consistent with
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a rational function of the form (2.1), a nontrivial set of
pk and qk satisfying these equations exists. A necessary
condition for this is that the rank of the matrix of the
coefficients, A, be less than m, i.e. that all the deter-
minants which may be formed by selecting m rows of A
vanish. It is convenient to represent A as a compound
matrix.

A B\= r )
\c D)

where

— —<t>Axi)
(2.11)

Each y, appears in one equation of (2.5) and one of
(2.8), and each /} only in one equation of (2.8). The
w-rowed determinants of A are therefore polynomials
of total degree m in the y,, and at most quadratic with
respect to each of the y, individually. In particular, the
vanishing of each of the determinants which contains
either the first row of A and B or the first row of C and
D, or both, provides a set of quadratic equations for y0
in terms of the/} and the other yr Since we are assuming
that the j>, and f, are, in fact, derived from a rational
function of the specified type, these equations will have
a common solution, which will also satisfy any arbitrary
linear combination of them. When y0 satisfies more
than one equation (i.e. when m < 2n + 2), a family of
integration formulas exists corresponding to solutions of
various linear combinations of the equations. By
selecting the proper linear combination, the balance
between stability and truncation error may be controlled.
Extensions along these lines are, however, beyond the
scope of the present study, in which we shall limit our-
selves to the case where m = 2n + 2.

In this case, y0 is subject to the single condition,

| A | = 0 (2-12)

which is, as we have shown, an algebraic equation of
degree 2 at most. The coefficients may be obtained in
the usual fashion by expanding A in minors of the rows
containing y0.

Difficulties will arise if there are more than two distinct
rational functions for which the data satisfy (2.2) and
(2.3). In this case, there are more than two sets of
independent solutions to (2.5) and (2.8), and the rank
of A is less than m — 2. All the coefficients of the
equation obtained by expanding A in minors of the
first rows of A and B and of C and D will then vanish,
and any value of y0 will satisfy (2.12). A solution may
still be obtained by deleting a sufficient number of rows
and columns of A so that the rank is one less than the
dimension. This amounts to assigning the value zero
to those of the pk and qk which are not specified by the
data.

3. Specialization
Further progress will be simplified by reducing the

generality of our treatment. A particularly important
case, especially for numerical solution of differential
equations, is that with equally-spaced base points. By
the simple linear transformation

= (xo-x)/h f=-h(dyldx) (3.1)

we may change a problem with arbitrary origin, x0, and
step size, h, to one with origin zero, and base points at
the negative integers,

x, = -i. (3.2)

It is also convenient at this time to specify the form of
the interpolating function (2.1) more precisely. We will
restrict our treatment to the case where the numerator
and denominator are both linear combinations of the
same set of basis functions. Although other sets may
be important in special problems, and can be treated by
the same method, polynomials are undoubtedly the most
generally useful set, and we will limit our explicit
development to them, setting

= ** = 0,l,2,...n) (3.3)

(3-4)

With this selection of basis functions and base points,
A, B,C, and D are all square (n + 1) X (n + 1) matrices
with elements

i+UJ+l

i-iy/i
D, 7 - 1

(3.5)

(3.6)

(/,./ = 0, . . . , « )

where / (OV" 1 and (0)J~l are taken to be 1 w h e n / = 1,
and 0 otherwise.

The first rows of these matrices are particularly
sparse: (y0,0,...,0), ( - 1 , 0 , . . . ,0 ) , ( / „ ,y 0 , 0 , . . . , 0 ) and
(0, — 1, 0 , . . ., 0) for A, B, C, and D, respectively. This
characteristic suggests evaluating |A| by expanding in
minors of the first and (« + 2)th rows. Let M(i- • • •'•k m)

denote the matrix obtained from M by deleting the
/, . . ., / t h rows, and the k, . . ., wth columns. Then,
expanding in minors of the first row,

&••» , D
+ (-1)" (3.7)

Expanding these determinants in minors of the (n + l)th
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row (the first rows of C and D),

O = | A | = (-1

Thus, |A| = 0 may be written as:

0 = (-iy*yl + (fi- Y)y0 + S/o +(-!)"€ (3.10)
where a, j8, y, S, and e are independent of y0 and / 0
and are given by

8 =

(3.11)

4. The two-point formula

For n = 1,

A = el:?)

and the determinants (3.11) become

€ =

- 1 ,
o,

y

/l, -

1
— 1

1

1

— Y f

/ •
= y\-

P -

s =

-7i. -1

7i-/ i . 0

— 7i . 1
7i— fu —l

= 7 i - / i

(4.2)

or

(3.8)

CO: ' £,(!;!) /o+t-D" |
CO;), Z)O;'.2)|

(3.9)

interval, /i = jr0 — JC,, we arrive at the formula

yQ = y}+h sgn (/ iVC/i/o). (4-5)

It is of interest that this formula is formally equivalent
to the trapezoidal rule, with the arithmetic mean of the
derivatives replaced by their geometric mean.

Since a is independent of the data, the difficulties
referred to at the end of Section 2, where more than
one independent rational is consistent with the data,
cannot occur. On the other hand, it is impossible for
the derivative of the ratio of two linear functions to
change sign, so that this formula is not suitable for
functions which are not strictly monotone in the interval
[*o> *i]-

If f(x, y) is a polynomial of degree 2 or less in y (i.e.
if the differential equation is a generalized Riccati
equation) (4.3) becomes a quadratic equation for y0 in
terms of yu ft, xu and xQ. We may thus .obtain an
explicit expression for y0. Specifically, writing the
differential equation as

y'=f= -(*y2 + py + y)

with a, j8, and y functions of x, we find

(y0 - i'i)2 = (*o - *i)2(<*o.vS + A>.yo + y0)

(<*i.V2 +0i .y i + Y\)

(4.6)

= - ^ K T 2 , + )So7o + Vo)/i (4.7)

Hence, we have for (3.10)

0 = -7o + 2yt 7o + / . /o - 7, (4.3)

7o = 7i ± V(/i/o). (4.4)

If (4.4) is to be correct for linear functions, the sign

7. ± hy/[-fi(Yo

or

= O (4.8)

so that

of the square root must be the same as the derivative ft.
Hence, returning at the same time to an arbitrary

l+A 2 / ,a 0

Since many common functions obey a generalized
Riccati equation, (4.9) is of interest as a source of
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approximations.* Some typical examples include:

(a) The exponential function. Setting a = y = 0,
j3 = — 1 in (4.6), we obtain the equation for the
exponential function,

y' = y. (4.10)

= 0, >>, = 1, x0 = x and/, = 1,

i*2) + x2/2. (4.11)

If we set

Inspection reveals that the positive sign should be taken.
Expanding the square root by the binomial theorem,
and comparing with the power series for ex, we find
that the error is

; + V + g 5 + (412)

approximately half that of the trapezoidal rule approxi-
mation

l + * / 2
1 - x/2 8 ' 16

(4.13)

and one-fourth the error of the truncated power series.
It may be noted that (4.13) is the first diagonal Pade
approximant.

(b) The logarithm function. Setting a = /? ~ 0,
y = —1/(1 + x) leads to the equation

/=l/(l+x) (4.14)

with the solution y = In (1 + x) if y(0) = 0. In this
case (4.9) reduces to

x)] (4.15)

and the error becomes.

In 24
(4.16)

again appreciably better than the trapezoidal approxi-
mation

x2 x3 x*

Substituting x for 1 + x in (4.15) gives the approxi-
mation

tax* x 1 / 2 - * - " 2 . (4.18)
(c) The tangent. An approximation may be derived

for the tangent based on the differential equation

> • ' = ! + y2. (4.19)

* Investigation of the use of (4.4) to obtain explicit approxi-
mations to functions obeying a generalized Riccati equation was
stimulated by discussions at the Conference on Approximations
held at Gatlinburg, Tenn. on 21-26 October 1963. This con-
ference was sponsored by the Society for Industrial and Applied
Mathematics and supported by the National Science Foundation
and the U.S. Atomic Energy Commission.

However, this approximation neglects the fact that the
tangent is an odd function, and has an error proportional
to JC3. A more efficient approximation may be obtained
by considering the function

y(x) = tan (

This function satisfies the differential equation

(4.20)

(4.21)
and thus may be approximated by

(4.22)
We thus obtain the approximation

tan x s x

(4.23)

with an error (2/7875)x7 + O(x9).
(d) The error function. Although the error function

does not satisfy a differential equation with algebraic
coefficients, the product exp (x2) erf (x) does. Since
the latter function is an odd function of x, we choose
to approximate the function

(4.24)y(x) = ex fe-'2 dt/x1'2.

This function obeys the differential equation

with boundary conditions

(4.26)

Using (4.7)

V 2 — V -i

Hence

2x~
2x - > )

4x

and

2x2

(4.28)

(4.29)

with an error of (64/2625 y/ir)x3.
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The corresponding
function itself is:

approximation for the error

Integration

the solution

a0 _ Af(4/0 - 4 / 0 / , / 2

— e
J

-i2 At — z e~
3V?

2A7(2A, -

4/o(4/2 - / , )

(4.30)

5. The three-point formula

For n — 2, the algebra becomes rather formidable.
We have, for this case,

/>o,O, 0 \
A = [ yt, — yu yt ) B =

_
4(4/2 -

after eliminating A, by the condition a2 = 0.

(5.10)

fo, Jo,
c=

- 2/2, -

When both a2 and ax vanish, but a0 ^ 0, the data are
again inconsistent with the form of rational function.
If all three coefficients vanish, it is impossible to select
Ao so that the rational function is uniquely determined.
We thus have the possibility of the type of indeterminacy
mentioned at the end of Section 2. We will investigate
this somewhat unusual case in more detail.

The vanishing of a2 implies that

After considerable manipulation, we find for the coef-
ficients of the quadratic (3.10),

(5.11)

while the vanishing of au taken with (5.11) leads to:

0 (5.12)

or
a =

- y =
g

4^, -

-Ay2

-Ay2

4y2yi

+
+
—

'2-/l

4yj +
8yty2

*y\y\ -

- 4 / 2

272/.

- 4 ^ |

~y\h

+
+
—

871/2

4/1/2

47?/2.

(5.2)

(5.3)

(5.4)

(5.5)

Finally,

/ . =

the vanishing of a0

-jWi-fx)2-

±4/2.
implies that

[5(4/2 + / i ) 0.

(5.13)

(5.14)

The equation simplifies slightly if we consider the
increments in the dependent variable,

Ao = y0 — y\ A, = yt - y2. (5.6)

Then, (3.10) reduces to

(4A, - / , - 4/2)Aj> + 2A,(2A, - / , ) A 0

- Af(4/0 +/ , ) + 4/0/,/2 = 0 (5.7)

which we may abbreviate as

a2A
2

0 + a , A 0 + a0 = 0. (5.8)

When a2 =£ 0, we may solve (5.8) by the quadratic
formula, obtaining, after simplification

Ao =

If /i = 4/2, (5.14) reduces to -/,3/4 = 0, and so
/ , = / 2 = A, = 0. With these data, (2.5) and (2.8) can
be satisfied only if /?, = yxqfa — 0, 1, 2) so that

R{x) =
q2x

2 (5.15)

4A,-/,-4/2

(5.9)

We have chosen the larger root of the quadratic to
insure that our formula holds for y(x) a polynomial.
Provided a2 ^ 0, this formula gives acceptable results
unless the discriminant is negative. As with the two-
point formula, a negative discriminant occurs only for
data which could not have been derived from the ratio
of two quadratic polynomials.

Vanishing of a2 is not at all serious unless a{ also
vanishes, since (5.8) reduces to a linear equation with

The qt may indeed be chosen arbitrarily and still satisfy
the data at xx and x2. The value at x0 is, however,
uniquely determined, and, indeed, the data are only
consistent if f0 — 0.

The case fx = — 4/2 ^ 0 is more interesting. Then
the vanishing of a2 requires that A[ = 0, while for
consistency, a0 must vanish so that (5.14) implies that
/ 0 = 0. Using these results to eliminate/0, / , , and y{

from (2.5) and (2.8), we may solve the four equations
which are independent of y0 to give

Po = yiVo — 8/2(^0 —

Pi =

Eliminating qx with (5.19), and introducing the para-
meter p = 2q2/q0, we find that the rational function

+ 92)

(5.16)

(5.17)

(5.18)

(5.19)

= y2 - p)
2 + 3x + x2

2 + 3x + px2 (5.20)
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is consistent with the data for any p except p = 1.
Thus, when yx = y2, f\ = — 4/2 # 0, the data are
inconsistent when f0 ^ 0, and when f0 = 0 neither the
rational approximating function nor the value of y0 is
determined by the assumption that y(x) is the ratio of
two quadratics. In many cases, however, the require-
ment that / 0 = f(x0, y0) — 0 will suffice to determine, or
at least restrict, the possible values of y0.

It should be emphasized that these difficulties, which
have been discussed at some length because of their
pertinence to the general rational integration problem,
are of little importance for the three-point case. They
can only occur when both a2 and a, vanish, i.e. when
y, = y2 and / , = ±4/2. These circumstances will
rarely be encountered in practical computation, where

the major obstacle to successful application of (5.9) or
(5.10) will be the failure of the assumption that the data
can be derived from the ratio of two quadratic poly-
nomials.

Note added in proof
While this paper was in process of publication, the

contribution of Lambert and Shaw (1965) appeared.
This paper mentions the geometric-mean formula (4.4),
but devotes most attention, to a class of open two- and
three-point formulas requiring one or more higher
derivatives. Numerical results of applying these for-
mulas to the equation (4.19), with y(Q) — 1 are given,
and confirm the superiority of even open rational
formulas over comparable polynomial formulas.
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Book Reviews

Error in Digital Computation, Volume 1, edited by L. B. Rail,
1965; 324 pages. (London and New York: John Wiley &
Sons Ltd., 51s.).

This volume results from an advanced seminar conducted by
the Mathematics Research Center of the United States Army
at the University of Wisconsin during October, 1964. The
subjects considered belong to numerical analysis, hence they
exclude mistakes of programming and the malfunctioning
of computers. At the seminar there were five sessions, each
on a separate subject, and as a result this book contains
expository papers by five different authors. It is convenient
to discuss them separately.

The Problem of Error in Digital Computation, by John Todd.
Starting with the assertion that it does not appear feasible

to perform rigorous error analyses of the traditional kind
for all algorithms, or to accompany all computations by
automatic error analyses, Professor Todd argues that we need
to change our standards of acceptability. He surveys
interpolation, square roots, eigenvalues of symmetric matrices,
Monte Carlo methods, good error estimates and controlled
numerical experiments. He prefers "cheap" error estimates,
i.e. those which can be had for a fraction of the work needed
to produce the result itself. The controlled numerical
experiments are to be carried out on new algorithms using
specially prepared sets of test data. Only algorithms which
perform well in the experiments or are otherwise interesting
need be subjected to more complete error analyses.

Techniques for Automatic Error Monitoring and Control, by
Robert L. Ashenhurst.

Notwithstanding Professor Todd's opinion, Professor
Ashenhurst discusses what can be done in computer arith-
metic in order that one may have at the end of a computation
not only an alleged result but also some idea of its accuracy.
He investigates fixed and floating-point arithmetic, introduces

the coefficient error amplification factor associated with an
arithmetic operation, and studies significance adjustment rules
which attempt to keep this amplification factor near unity.
The rest of the paper discusses unnormalized computer
arithmetic, which has the required property and has been
implemented, and some particular applications.

The Automatic Analysis and Control of Error in Digital
Computation Based on the Use of Interval Numbers, by
R. E. Moore.

Dr. Moore's paper starts with alternative ways of specifying
an approximately known number, either as an exact number
with a bound to the error, or as an interval within which the
exact number is known to lie. The approximate number
could be a piece of data or a computed number, and so it is
seen that interval arithmetic and interval-valued functions
are of great relevance to computer work. Interval arithmetic
can be programmed and can take account of uncertainty in the
data, finite precision of the computer arithmetic and analytic
errors. Dr. Moore elaborates this idea and its consequences
and shows its application to numerical integration including
Gaussian quadrature and to the initial-value problem for
ordinary differential equations. The paper culminates with
an explanation of a computer program DIFEQ which accepts
as data a specification of a system of ordinary differential
equations and the initial values, and produces solution values
with guaranteed bounds on the overall error. The method
used requires the numerical evaluation of Taylor-series
coefficients, and a part of the program generates from the
system specification, a subroutine for doing this by recursion
formulae.

Error in Digital Solution of Linear Problems, by E. L.
Albasiny.

The paper by Mr. Albasiny is an account of some of the
work of Mr. J. H. Wilkinson and its applications to the

(Continued on p. 371)
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