
Error curves for Lanczos' "selected points" method
By W. Kiznerf

The solution of ordinary differential equations by polynomials is discussed' from the point of view
of constructive function theory. The paper shows how to obtain two new families of "selected
points", one of which tends to minimize the absolute maximum error of the solution, and the
other of which tends to minimize the absolute value of the error at the final time point.

1. Introduction
Various investigators (Clenshaw, 1957; Fox, 1962;
Clenshaw and Norton, 1963; Kizner, 1964a; Wright,
1964) have made use of Lanczos' method of "selected
points" (Lanczos, 1956) or in related methods in the
solution of ordinary differential equations. The choice
of these points has been either the zeroes of Tn(x) or
the maxima of Tn(x). Recently, Filippi (1964) recom-
mended another choice which is close to optimal. Here
we find two other choices of "selected points" and
indicate their advantages.

Wright (1964) attempts a justification of the choice of
the zeroes of Tn(x), but his form of the residual,

E= U(x- Xi)4>(x),

where ip(x) is an unknown function which depends on
the differential equation, is incorrect. In fact we will
show that local extrema occur near the JC,.

Some of our conclusions about the form of error
curves are similar to Lanczos (1956). Whereas his dis-
cussion (p. 477) is concerned with a particular equation,
we consider the question more generally.

Other topics that we consider concern estimates of
the error when the length of the interval in which the
solution is sought is changed, and the degree of the
approximating polynomial changed.

2. Results from the constructive theory of functions
We wish to solve

Y=F(Y,x) (K
where 7 = (/•>, y<-2\ y(m)) is the vector of the
m unknown functions, Y is the derivative of Y with
respect to x, the independent variable. We also assume
that equation (1) holds for — 1 < x < 1.

To simplify matters we will assume that m = 1, and
call our solution y(x). In solving a differential equation
by Lanczos' method, using n evaluation of derivatives,
we obtain a polynomial approximation of degree
n,pn(x), for the solution. In order to specify how

* This paper presents the results of one phase of research carried
out at the Jet Propulsion Laboratory, California Institute of Tech-
nology, under Contract No. NAS 7-100, sponsored by the National
Aeronautics and Space Administration.

t Jet Propulsion Laboratory, Pasadena, California.

"good" an approximation is, we adopt the uniform
norm. Thus

max I
ILK*) - P n ( x ) \ \ = -pJLx) \ (2)

where we assume that X*) is a continuous function.
Thus our problem is to choose the "selected points" so
that equation (2) is as small as possible, if not for all
F(y, x) of equation (1), then for sufficiently "well
behaved" functions F(y, x).

In order to see how good these approximations can
be, we make use of results from the constructive theory
of functions. A good source for learning the theory at
about the level of a real-variables course is Natanson
(1955). Golomb (1962) provides a functional-analysis-
oriented treatment with many new results. The follow-
ing fundamental theorem is due to Chebyshev and Borel.

Theorem I. Let X*) De a continuous function on
[a, b] or y(x)eC[a, b], and let the integer n be given.
Define

where />„(*) is any polynomial of degree n or less. Then
(a) There exists a polynomial pn contained in the set

of pn such that
£„ = IIX*)-/„(*)!I-

(b) For pn(x) to have this property, it is necessary and
sufficient that y{x) — pn{x) attain its maximum absolute
value M at least n + 2 points of [a, b], and that the
maxima alternate with the minima at these points.

(c) The polynomial pn(x) is unique.
The Weierstrass approximation theorem tells us that

En tends to zero for any continuous function. However,
there is a theorem due to Bernstein, which tells us that
for any number sequence

Ao > .4, lim An = 0

there exists a function y(x)eC[a,b] with the best approxi-
mations En(y) = An. Thus if all we know about the
function is that it is continuous, it may be impractical
to try to find a polynomial approximation for it.

The rate at which En tends to zero depends largely on
the "degree of smoothness" of the function approxi-
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Error curves

mated. In order of increasing smoothness we list
continuous functions, differentiable functions, n-times
differentiable functions, infinitely differentiable functions,
analytic functions, entire functions, and polynomials of
restricted degree. The following is an abstract of results
due to Jackson. The form of the theorem as stated here
can be found in Golomb (1962). By y(x)eC"[a, b] we
denote functions that have continuous «th order deri-
vates in [a, b\

Theorem II.
(a) If y(x)eC'[a, b] such that for xc\a, b], \yl(x)\ < M,,

then
Tr(b — d)Mx

(b) If y(x)eCP[a, b], \y(x)\ < Mp for xe[a, b], and
n> p,p= 1,2, ...

(c) Under the assumptions for (Z>) and n > 2p — 4

En*

Thus we have bounds on En which tell us how rapidly
En goes to zero. From (c) we see that for any
y(x)eC[a, b], En goes to zero at least as fast as
(n + l)~p. When y(x) is infinitely differentiable on
[a, b], or y(x)eCx[a, b], we have

lim («"£„) = 0
n—>oo

for all p.
Bernstein has proved a converse theorem: If

En< {n + l)n . . . (n - p + 2)

for a constant A, then y(x)eC[a, b].
We next see what the convergence is for functions

analytic on the line. y(x) defined on [a, b] is said to be
analytic on the interval if for any xoe[a, b] there is a
power series

(
i=0

convergent for \x — xo\ < R, which represents the
function at all points belonging simultaneously to [a, b]
and (x0 — R, x0 + R). We denote by A[a, b] the class
of functions analytic in the segment [a, b). If R = oo,
the function is said to be an entire function. Then
we have:

Theorem III. Let y(x)eC[a, b]. ThenJ{x)eA [a, b] if and
only if

En < Kq»

where K and q < 1 are constants.
Moreover, y{x) is an entire function if and only if

lim </(£„) = 0.

To apply these theorems to solutions of differential
equations (1), where the solution is not available, we
can make use of the following two theorems (Lefschetz,
1962).

Theorem IV. Let F(y, x) of (1) be O in y and x in a
certain region Q. of the product space of y and x. Then
the solution y(x, x", y°), where x° and y° are the initial
conditions, such that y(x°, x°, y°) = y° belongs to C
in x° and y° and belongs to Cp+1 in x.

Theorem V. If F( y, x) is analytic in both variables and A
is the domain of analyticity then the solution y(x, x°, y°)
such that [y(x), x]eA, X*0. *°> y°) — y°> >s analytic in all
three arguments.

Having found good estimates of how En varies with
increasing n for a particular function defined in a given
interval, we ask how En behaves when we vary the
interval, or vary a and b. Here we have in mind the
claims made that "global" methods are more efficient
than "local" methods. Here Theorem II tells us what
to expect if these bounds are close to the best possible
bounds. But it is easy to show cases where these
bounds are a poor indication of the actual error.
Theorem II does suggest that for a given y(x)eC[a, b]
and Mp more or less independent of the interval, that
En is proportional to (b — a)mln(-"-f'^ where by min (n,p)
we mean choosing the minimum value from the collec-
tion of values n and p. This result is consistent with
our experimental findings.

Another approach that we might take is to assume
that we have a "well behaved" function which can be
expanded in a Chebyshev series such that the norm of
the error in using the truncated series is close to En.
Elliott (1963) has derived the following bound for an,
the coefficient of Tn(x) in the expansion of y(x) where
y(x)eC">[a,b]:

and, as before, max \y"(x)\ = Mn.
Sharper bounds are derived by Elliott (1964) which

depend on the behaviour of the function in the complex
plane.

3. The form of optimum error curves for solutions of
differential equations

Let us now see how the practical limitations involved
in solving an ordinary differential equation on a com-
puter affect our results. Since the error curve for the
optimum pn{x) may resemble Jn+1(x) and usually will
have maxima or minima at the end points, we cannot
obtain this curve without modifying the initial con-
ditions. For practical reasons let us agree not to
modify the initial conditions.

Another constraint which may be needed comes about
if the time interval for which a solution is sought is so
large that the desired accuracy cannot be achieved by a
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polynomial of limited degree, thus necessitating the
subdivision into smaller intervals, and the approxima-
tion on each of these. Here we would like the error at
the end of each subinterval to be as small as possible
so that errors do not propagate. Thus we postulate
that we wish a modified extremal approximation where
the initial error and final error is zero.

4. Properties of the optimal error curve
There is a fundamental theorem similar to Theorem I:

Theorem VI. Let y(x)eC[a, b] and let the integer n > 1
be given. Define

Error curves

or -M + e < y(x) - qn{x) < M

where qn(x) is any polynomial of degree n or less that
satisfies qn(a) = y(a) and qn{b) = y(b). Then

(a) There exists a polynomial qn contained in the
family of qn such that

(Jb) For qn{x) to have this property, it is necessary
and sufficient that y{x) — qn{x) attain its maximum
absolute value M at at least n points of [a, b], and
that the maxima alternate with the minima at these
points.

(c) The polynomial qn(x) is unique.

Proof: The proof of existence (a) follows from a theorem
in functional analysis (Theorem 1.1 of Golomb, 1962)
which states that when the manifold of approximants
is finite dimensional, the set of best approximations is
non-empty. Incidentally the search for qn can be made
from the set c2T2**(x) + c3T?*(x) + . . . + cnTn**(x),
where c2, c3, . . ., cn are unknown coefficients and T**(x)
are polynomials which are similar to the Chebyshev
polynomials but are zero at the end points (see equa-
tion 6). To this must be added a straight-line solution
satisfying the boundary conditions.

Next we prove the sufficiency of condition (b).
Suppose qn(x) is a polynomial such that it satisfies the
boundary conditions, and y(x) — qn(x) attains its maxi-
mum modulus M, with alternating signs, at n points of
(a, b). If qn{x) is any other polynomial of degree n
satisfying the boundary conditions, we cannot have
IX*) — 9«(*)l < M throughout [a, b] because the
polynomial

*„(*) - Ux) = [y(x) - qn(x)] - [y(x) - qn(x)]

would be of alternating sign at the n points in question,
and would therefore vanish at n — 1 in (a, b) in addition
to vanishing at the end points, which is impossible.

Next we show that condition (b) is necessary. Suppose
the maximum error M is attained at fewer than n points
having alternating sign. Then the interval [a, b] can be
subdivided into n — 1 subintervals, in each of which we
have one or the other of the inequalities:

-M<y(x)-qn(x)<M-e

satisfied alternately, where e is a positive number. This
can be done by taking each subinterval to include one
extremum of y(x) — qn(x). Let qn{x) be a polynomial
which vanishes only at the end points and the n — 2
points common to two of these subihtervals. Therefore
for some choice of parameter rj, we have

IX*) - 4JLx) - V9»(x)\ < M

contradicting the extremal property of qn(x).
Finally concerning uniqueness, suppose qn(x), qn(x),

qn(
x) ^ Qn(x) a r e DOtn extremals of our problem satisfy-

ing the boundary conditions. Then so is

But y{x) — Rn(x) attains its extrema at fewer than
n points, which is impossible.

We now ask how much larger is En than Enf We can
see immediately that En < 2En, since if we start out with
pn and add a first-degree polynomial to satisfy the
boundary conditions, then the maximum increase in the
error modulus is En.

By making some assumptions about the form of the
error curves we can obtain a more realistic estimate of
the relationship of En and En. We assume that the
error curve for qn{x) for [a, b] is the same as for^n(x), but
with a larger interval [A, B], where A < a, and B > b.
In general we can find an A and B which will satisfy
these conditions, assuming that the function y(x) can
be continued beyond the original interval. If in addition
we assume that the ratio of the lengths of the intervals
is cos {7r/2[l/(« + 1)]} [assuming that pn(x) results
in an error curve resembling Tn+ i(x)], and that En is
proportional to the n + 1 the power of the ratio of the
lengths of the interval, then

1

COS f- l

\2 n +

n + l

(5)

Thus for large n it appears that En tends to En.

5. Choices of "selected points"

At this point we have a clear picture of the optimum
error curve, associated with qn[x). This error curve has
n extrema alternating in sign and is zero at the initial and
final values of x. Now we seek to choose "selected
points" to achieve this form of error curve.

Consider the differential equation (1) with FeC° in
y and x in a region containing the solution of the
differential equation for the fixed initial conditions.
Then Theorem IV implies that y(x)eC°°[a, b], which
indicates that y(x) and y(x) have rapidly converging
polynomial approximations.
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Error curves

We construct the error curve by starting out with the
exact solution, and using Picard's method of successive
approximations to see how the errors enter. Hopefully
this method will converge rapidly for a large enough n
and a good choice of "selected points." This assump-
tion will appear more reasonable when certain matrices
are derived in Section 6.

Thus we calculate the n values of the derivates at the
"selected points" using the exact solution to obtain Qx,
the first (n — l)th degree polynomial approximation for
the derivative, and Qx, the first nth degree polynomial
approximation for y(x).

Qx will differ from y(x) because Qx is inexact, except
at some few points. Hence the error curve associated
with Qx will have extrema at the "selected points," where
Qx is exact.

The next approximation is determined by equating
Q2 and f(Qi, x) at the "selected points." If a good
choice of points has been made then, for large enough n,
we expect that, because of averaging, the integrated
values, Qu should not differ much from y(x) even though
Q{ may differ considerably from y(x). This implies
that £?2 will n o t differ much from Qx. It is then our task
to choose the points so that averaging does occur.

If we have only one dependent variable, then one
choice of "selected points" might be the n extremal
points referred to in Theorem VI(Z»). This would make
the maximum absolute error of Qx at the "selected
points" as small as possible while satisfying the boundary
conditions. Thus when E is small enough so that
j\Qx, x) is close enough to/[X*), x], Q% will not differ
appreciably from Qx, and the process will have converged
in a practical sense. Unfortunately it may not be practical
to calculate these "selected points," except in an
approximate manner to be described.

Thus we assume that the error curve y(x) — Qx{x) can
be adequately represented by an nth degree polynomial.
We can now easily calculate the "selected points" since
we know the form of the integrated error curves,
y(x) — Q\(x). We guess that the integrated error curve
is of the form Tn+X(x) with a change in scale. We
define a new "stretched" Chebyshev polynomial by

n + 1
COS \2n + \

n>\ (6)

From Theorem VI we see that T**x(x), — 1 < x < 1,
is the unique error curve, since it has the required
number (n) of extrema with the alternation property.
Thus the "selected points" are given by

cos
x,

cos ( ^ —

(7)

We call this distribution the "extremal."
Filippi (1964), in considering a specialized case of

solving an ordinary differential equation, that of finding

an indefinite integral, has arrived at a distribution of
"Stiitzstellen," or ''selected points" which is similar
to equation (7):

(7a)

It is clear that this choice will result in an error
curve which is similar to Tn+X except that it will be
displaced either up or down due to choice of initial
values. Filippi's Fig. 1 shows this clearly. Thus Filippi's
choice results in a maximum error about twice the size

We shall call the usual distribution, based on the
zeroes of Tn, the Chebyshev. This choice tends to make
| |X*) — QiWII small, but not necessarily the integrated
error curve. Another distribution that we might use is
based on zeroes of the Legendre polynomials fn(x), as
used in Gaussian quadrature. If we are particularly
concerned with the accuracy of end-point values, and

partial derivatives —^— are small, then thisthe

choice has much to commend it. Because of the pro-
perties of Gaussian quadrature we expect to obtain
excellent accuracy at the end points provided the partial
derivatives are small. We now seek to show that

UK*) - Cl(*)chebyShev|| > I IK*) ~ ClM Legend re I1

where by 2i(*)chebyshev we mean Qx determined by
using the zeroes of Tn{x), and the corresponding
quantities using the Gaussian abscissas and the extremal
points (7). For n = 2 the zeroes of P2(x) and the
extremal points coincide.

First we derive the form of the error curves for the
first iteration. For the Chebyshev case we obtain

e(x) = > 2

n - l

L" + 1 « - 1J (8)

Using the zeroes of the Legendre polynomials we obtain

e(x) = \XPn{xW n > 1

1
2n

(9)

From equation (8) we see that if n is odd there is no
truncation error at the end point x = 1. For large n
the term involving l/(n + 1) — l/(n — 1) can be neg-
lected. It is easily shown from equation (8) that the
signs of the extremal points alternate and the magnitudes
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are given by

(10)

i = 0,

where C depends only on n and / is the number of the
"selected point." Thus the magnitudes of the extrema
are small at the ends and are largest at the middle of
the interval. From equation (10) it follows that for
large n about 29% of the extrema will have a magnitude
between M. the maximum of the extrema and 0-9Af.

In Table 1 we show the results for other magnitudes
and compare with the case using the zeroes of the
Legendre polynomials.

Table 1

Distribution of the magnitudes of the extrema for large n

Chebyshev
Legendre

FRACTION HAVING MAGNITUDES

>0-90M

0-29
0-40

>O-75M

0-46
0-62

> 0 50A*

0-67
0-84

>025M

0-84
0-96

To find a formula analogous to equation (10) for
the Legendre case we make use of the well-known
asymptotic formula

( c o s * > -
" 2

(11)

Using equation (11) to find the zeroes of Pn and the
amplitudes of Pn+1 we find that the maximum and
minimum points of Pn+ ,(x) — Pn_ x{x) are given by

^ In + 1 r 2 V/2

4n+2 -4-J (12)

i = 0, 1 , n - 1.

After some manipulation the formula analogous to
equation (10) is found to be

4/\ lV/ 2

I sin | - u , , ) | \ (13)

• = 0 , 1 , . . . , « - 1
{•

which for large n is like the square root of equation (10).
Equation (13) was evaluated for various n and com-

pared with the exact results. The maximum error of (13)
for n = 6, 24, and 96 is about 0 0 3 , 0 0 1 , and 0003,
respectively. The results of Table 1 hold surprisingly
well for very small n for the Legendre choice.

On the basis of the distribution of the magnitudes of
the extrema we might guess that | \y(x)—(?i(*)chebyshev| | >
\\y(x) — (?i(X)Legendre||- For n = 1 the points coincide.

It is possible to prove these results by expanding the
error curve in T**(x) polynomials, and note that if the
term of highest n, cT**(x) is neglected, then we can
compare the magnitude of c with the magnitude of the
largest extrema of the error curve. This is similar to
approximating an «th degree polynomial by an n — lth
degree polynomial by finding K the coefficient of Tn, and
subtracting KTn. The results of these calculations are
shown in Fig. 1, where we give the ratio of | \y(x) —
ClWchebyshevH tO | \y(x) - £>i(*)extremal| I and | | . K x ) -
ClWLegendrell tO ||X*) ~ ClWextremall I- The limits of
these ratios as n approaches infinity are 2 and \/2,
respectively.

6. Numerical results

We now consider some examples to show how well
the model error curves, equations (8) and (9) and T**,
agree with actual error curves. First, we expect that
the extrema of the actual error curves occur close to
the "selected points." In addition, if y'(x) has a very
rapidly converging polynomial expansion, then the error
curve should resemble the model error curve for our
choices of "selected points."

4.0
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0
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——

ID n
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Fig. 1.—Ratio of Chebyshev and Legendre maximum absolute
errors to extremal maximum absolute error for various numbers

of selected points
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Table 2

Error curves for ef, n — 5, 0 < t < 1

NUMBER OF
POINTS

1
2
3
4
5

CHEBYSHEV CASE

VALUE OF / AT
SELECTED POINT

0 0245
0-2061
0-5
0-7939
0-9755

ERROR
X 10«

- 0 - 3 1
3-13

- 1 - 7 8
3-55
0-81

LEGENDRE CASE

VALUE OF t AT
SELECTED POINT

0 0469
0-2308
0-5
0-7692
0-9531

ERROR
X 10«

1-17
•61
•71
•55
•10

EXTREMAL CASE

VALUE OF 1 AT
SELECTED POINT

0-0517
0-2412
0-5
0-7588
0-9483

ERROR
X 106

1-45
1-36
1-44

•31
•47

An example where both assumptions are fulfilled is
the solution for e':

In Table 2 we show the results taking the number of
points, n, equal to five. The errors given in Table 2
are calculated at the "selected points," but would not
vary much if calculated at the extremal points.

Thus we see that for the extremal case the magnitude
of the peaks of the error curve are nearly constant. For
the Legendre case we choose a constant for the model
curve of equation (9) to match the middle residual to
obtain -1-12,1-57, —1 -71,1-57, and - 1 • 12. If we do
the same for the Chebyshev case we obtain —0-24, 2-25,
— 1-78, 2-25, and —0-24. Thus the Chebyshev case
exhibits the poorest agreement with the model curve, and
the Legendre case the best. In other examples that we
calculated the Legendre and extremal cases had also
error curves much closer to the model curves than the
Chebyshev case. Another quantity that is of interest is
the ratio Of | \y(X) - QWchebyshevI I tO | |X*) - COWmall I
and the corresponding ratio for the Legendre case.
Here Q(x) is

lim Q,(x)
/ - • C O

If we assume that Q(x) does not differ much from
Qi(x), we can compare the observed ratios from

3-55 . .1-71
Table 2, = 2-41 and = 116 , with the curves1-47 - — j , 4 7

of Fig. 1, which yield 2 • 43 and 1 • 22, respectively.
Thus we have good agreement for this example.

Let us now consider the error at the end point for the
same equation. In Table 3 we show the results for
different n. Here we underline the first digit that must
be changed. The exact value for e is 2-71828182845904
. . ., so that the last result using the zeroes of the
Legendre polynomials is good to 12 decimal places.

Various other differential equations were integrated.
If the interval was chosen small enough to assume
rapid convergence similar results were found. Where
the interval was large and convergence was slow the

Table 3

Solutions of y = y, y(0) = 1, evaluated at t = 1

NUMBER

POINTS

1
2
3
4
5
6

CHEBYSHEV
CASE

3
2-777
2-7168
2-71836
2-7182807
2-718281890

LEGENDRE
CASE

3
2-7143
2-71831
2-71828172
2-71828182874
2-7182818284586

EXTREMAL
CASE

not defined
2-7143
2-71845
2-718279
2-71828195
2-7182818270

results were erratic. But in all cases the peaks in the
error curves occurred close to the "selected points."
And in all cases where the interval was fixed and n varied,
the end-point error decreased more rapidly for the
Legendre case than for the other two.

7. The practical calculation of solutions by the Picard
method

One method of solution which is applicable to a wide
range of problems is based on the Picard method of
successive approximations (Clenshaw and Norton, 1963).
Other methods in which the equations are linearized will
be discussed in the next section.

We seek a solution of

~=F(Y,t),Y(a)=Y0 (1)

a < / < b, where Yo are the initial conditions. With
the change of variable

we obtain

a + b b — a
t = —=— + —r— X

^- = Y=hF(Y,x), Y(a)= Yo (la)
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, F(Y, x) = F[Y,

where

-\<x<\,h =

Next we evaluate F(Y, x) at the "selected points," fit the
derivatives with polynomials, and integrate to obtain the
next approximation. Instead of carrying out these
operations explicitly we can simplify the calculations,
and thereby gain in accuracy and speed, by precalculating
the results of these operations in the form of matrices.
The amount of simplification depends on the choice of
"selected points!" We illustrate this first for the
Legendre case (using the zeroes of the Legendre poly-
nomials for the "selected points"). If we assume that
Y has only one component, then the ith approximation

Qi = 2 affix)
0

A r = l

(14)

(15)

where /xn>fc are the weight factors for Gaussian integra-
tion, n being the total number of points, and k the index
of the point. Abscissas and weights for Gaussian
quadratures are tabulated in Gawlik (1958) and Davis
and Rabinowitz (1956 and 1958). Equation (15) can
be derived using the property of Gaussian quadrature that

.1 n

y(x)
J - l k=\

whenever y(x) is a polynomial of degree < 2n — 1, and
the orthogonal relations of Legendre polynomials

\_Pm(x)Pn{x)dx = ^ — Smn

where Smn is the Knonecker delta function. Integrating
equation (14)

= 2 bjPfix)

= )>o — Oo — -j-

7 - 1

"> 2 / - 1

where a,- = 0 for j > n.

2 /+ 3

(16)

y = l , 2 , . . . .» (17)

In evaluating a Legendre series or any series of
polynomials po(x), pt(x), . . ., satisfying a recursion of
the form

PoW

P\(x)

Pj(x)

= !

= ( « 0 "

= (a/-

f- box)po(x)

, + &y_,JC)/>y-l ~ cy-2/»y-
y = 2,3,

2(*),
• • •>

(18)
(19)

(20)

where the ah bj, and cy are constants independent of x,
Theorem VII may be applied. The motivation for the
theorem is due to Clenshaw (1955). The proofs given

here are due to Drs. J. R. Rice, Purdue University, and
C. L. Lawson, Jet Propulsion Laboratory.
Theorem VII. An expression of the form

q(x) = £ d,p,(x)
i = 0

can be evaluated by the following recursion formulas:

wn = dn

w«- I = («n- i + bn- xx)wn + dn_,

j = n — 2, n — 3, . . ., 0

Wj = {flj + bjX)wj+, - CjWj+2 + dj

i(x) = w0.

To verify that w0 is equal to

(=0

multiply the equation containing d, by pt(x) and sum
these K + 1 equations obtaining

n n— 1

«—2

- 2 CjW
y = 0

jWJ+2Pj(x) + 2
^ 0

Then collect terms on the w/s obtaining
n

j = 2 J J y - i J-I j -

+ wxpx{x) — (a0 +
n

+ VoW = S djpfix).

The coefficient of wy, j =- 2, . . ., n, is zero because of

equation (20), the coefficient of w, is zero because of

equation (19), and the coefficient of w0 is one because of

equation (18). Thus this equation reduces to

w'o = £ djpfix)

which is the desired result. For Chebyshev polynomials
T0(x) = 1, 7,(JC) = x, T2{x) = 2x2 — 1, etc., this recur-
sion becomes particularly simple because with the
exception of b0 all of the a,'s, 6,'s, and c,'s are indepen-
dent of i.

a,; = 0 i = 0, 1, . . .

b, = 2 i = l , 2 , . . .

For Legendre polynomials -Po(*) = 1, P\(x) = x, /"2W
= I*2 — | , etc., the constants are

a,, = 0 i = 0, 1, . . .

1 = 0, 1, . . .
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G =

0-17392742
0-37623623
0-33438384
0-35496514

Error curves

Table 4

Legendre case

-0-053208360
0-32607258
0-70790601
0-62689023

0-025254925
0-055760857
0-32607258
0-70535352

-00071102994'
0-013471001
-0028381390
0-17392742

0-29205613
0-10736392
-0-08142227
0-066563505

-0-028986485

0-39453250
0-39263608
-0-14187965
-0-066563505
0-073419724

0-25761265
0-39263608
0-14187965

-0-066563505
-0-073419724

0-055798711
0-10736392
0-089142227
O-0665635O5
0-028986485

c • ==
i + l

i = 0, 1,

We note that the calculation of the coefficients and
the evaluation of the series are linear processes which
relate calculated values of derivatives to the values of
the functions at the "selected points." Thus there
exists an n X n matrix G such that

Gl2F(Qh x2) + • • • ]

2lF(Qhxl)

G22F(Qh x2) + . . . ]

Gn2F(Qit x2)

y0

yQ.

(21)

G is obtained by calculating each column in turn. For
theyth column set h = 1, F{Qh xk) = SkJ, y0 = 0. The
a's and 6's are calculated by equations (15) and (17) and
the resulting series for Ql+l is evaluated at the "selected
points." These are the elements of the /th column of G.

Although the solution is available in the form of a
Legendre series, it is preferable to have it in the form of
a Chebyshev series because a Chebyshev series requires
fewer multiplications for its evaluation. Another reason
is that the user can specify the accuracy he desires more
easily with a Chebyshev series. Again, it is a straight-
forward matter to evaluate the solution Qi+l at the
zeroes of Tn+i(x) and fit them with Chebyshev poly-
nomials, thus obtaining the H matrix defined by

( = 0
(22)

c = hHF(Qh x) +

where c is the column vector of c0, cx, . . ., cn, and F
is the column vector of F((?,, x,), F(Qh x2)

We exhibit in Table 4 the G and H matrices for n = 4
for the Legendre case, the numbers being correctly
rounded off to eight decimal digits. The points are
numbered starting with the point closest to — 1.

Similar matrices can be derived for the extremal case.
But here there is a difficulty in fitting Q with a poly-
nomial. The problem can be handled as follows:

By a change of scale

_J_)

the points are given by
ni (23)

/ = 1,2, . . .,n.

If we include the points t0 = 1 and /„+, = — 1 we can
determine an (n + l)th degree polynomial j(<) = l/2c0
+ 0,7,(0 + . . . + cnTn(t) + l /2c+ 1(0 which takes on
prescribed values at the n + 2 points by

c, = (24)

= 0, ! , . . . ,« + !
with the understanding that the end points are taken with
half weight. We now define y(t0) and y(tn+,) so that
cn and cn+1 are both zero. Thus to obtain the kth
column of G we let y(tk) = 1, y(t,) = 0 for / = 1, 2 , . . . ,« ,
i ^ k, and

1 nk

yi'n+t nk
(25)

The Chebyshev series is integrated with respect to dx
and the constant of integration chosen arbitrarily. The
series may then be converted to power form and the
transformation made from ( t o x and then transformed
into a Chebyshev series in x. Or the function can be
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G =

0-19031666

0-39297441

0-35597247

0-376994519

Error curves

Table 5

Extremal case

-0063801399
0-32498835
0-68690999
0-60017148

0-031304253
-0-055434256

0-30648738
0-69527713

-0 0084703186 \
0012551802 \

-0-024450139 J
0-17820761 /

//= -

0-30776329

0-11684405

0-093780638

0-067418083

0-029720516

0-37711809

0-38315595

-0-13918955

-0067418083

0-077809321

0-25435764

0-38315595

0-13918955

-0-067418083

-0-077809321

0-060760981

0-11684405

0-093780638

0-067418083

0-029720516

evaluated at the points

/7T H + l\ (-U 1 \
/, = COS ( -z — r ) COS ( - —7 I

V2 n + 1/ \ 2 « + 1/
and then fitted with a polynomial in x. Lastly the
constant term is evaluated. We exhibit in Table 5 the
G and H matrices for n = 4 for the extremal case.
Again the points are renumbered starting with the point
closest to —1.

An elegant alternative method is given by Filippi
(1964) for doing this sort of problem.

These matrices have been calculated up to n = 48
using the curve-fitting procedure. The calculations were
in double precision (16 decimal places) and were checked
using extended precision. The final results were always
good to about 14 decimal places.

For large n it may be desirable to store the matrices
on tape, since the elements are used in a fixed order.
Also it is clear that for large n we may estimate the size
of the elements in the H matrix by neglecting the
difference between x and t. Thus for large n the elements
of kth column of H are approximately given by

1 (26)
j,k=\,2,...,n

with HOk = Hlk - H2k + H3k — . . .

From equations (24) to (26)

j(n + \)

j > 1 when n is sufficiently large. This assures us that
the roundoff error will be small.

8. Linearization of the equations
An approach to the solution of nonlinear ordinary

differential equations, especially those that are (two-
point) boundary-value problems is based on linearizing
the equations. One method of linearization depends on
a generalization of Newton's iteration formula to

operator equations in Banach spaces obtained by
Kantorovich (1948). Hestenes (1949), Kalaba (1959),
McGill and Kenneth (1964), and others applied this
method to boundary-value problems. Norton (1964)
showed how to implement this method using Chebyshev
series.

The method consists of solving equation (1) by itera
tions, the iteration being indicated by a subscript:

= F(y,-u x) + (y, - y,. u x). (27)

By adding to any solution of equation (27) a suitable
solution of the homogeneous equation

z = zFJ£y,_ux) (28)

one can hope to satisfy the boundary conditions for each
iteration.

Kizner (1964a) has shown another method for lin-
earizing the equations for the initial-value problem.
Let us rewrite equation (1) as

h = y>-\ ;, x) - j , _ , (29)

where A is a parameter that takes on values 0 < A < 1.
For A = 1 equation (29) is identical to equation (1).
For A = 0, y-t — yt-i. Now consider y-, as a function
of both x and A.

Then under very general conditions the following
equation holds:

lF(yitx)
% • <*>

Equation (30) may be interpreted as a matrix equation
when the number of dependent variables is greater than
one. Also

, A)
dX. (31)

Thus far we have made no approximations and no
linearization. Now let us formally solve equation (31)
by a "Runge-Kutta integration" in A. The classical
Runge-Kutta fourth-order formula "applied" to equa-
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Error curves

tion (31), with step size h = 1 results in the following
set of linear differential equations:

yi(x, 1) = JViW + i(*i + 2k2 + 2A:3 + k4) (32)

where k, are solutions of equation (30) evaluated accord-
ing to the following scheme:

dx
k-> =

d

dx 3 ~~ J

d

dx

1 dF(
+ 2 <:

FV'-1 +"2
1 SF(

+ 2 J

Hy,-i+k3

*F{y,

^y

<)
y

,x)

y,x)

y

, * ) -

x)

y~

y=yi-\

- y,

y=yi-

-y,-i

+ (fcl/2)

- 1

+ WT2/2)

k4

(33)

with the initial conditions kt, = 0 at x =
2, . . ., 4.

— 1, / = 1,

In other words (30) is linearized by substituting for y,
and A the approximate expressions as given by a Runge-
Kutta formula. This procedure can be justified in the
same way that Runge-Kutta formulas are justified for
the numerical solution of ordinary differential equations.
Examples are given by Kizner (1964a).

The advantage of this method is that the convergence
of the method is very rapid compared with the Picard
method. A similar idea was applied by Kizner (1964£)
to the solution of nonlinear equations. The reason for
the success of "Runge-Kutta" type methods seems to
be due to the use of Runge-Kutta formulas that take
account in part of some of the higher-order terms. A
collection of optimum Runge-Kutta formulas is given
by Ralston (1962). Our experience with these formulas,
which is mainly in solving nonlinear equations, bears out
the theoretical results of Ralston about the size of the

truncation errors for different formulas. Also, the
formulas are more widely applicable than the standard
Newton-Raphson method.

9. Conclusions
Let us consider five choices for the n "selected points."

1. Zeroes of Tn, called the Chebyshev choice.
2. Zeroes of Pn, called the Legendre choice.
3. Extrema of the "stretched" Chebyshev polynomial

T**i, called the extremal choice. This is equivalent
to using the zeroes of the derivative of T**\.

4. The extrema of Tn_u as used by Clenshaw and his
associates, called the Clenshaw choice.

5. The zeroes of T'n+\, advocated by Filippi (1964),
which we call the Filippi choice.

For "well-behaved" functions and a proper choice of
n the extremal choice yields the smallest maximum error,
followed by the Legendre, Filippi, Chebyshev, and
Clenshaw choices. The errors of the Filippi and
Chebyshev are about the same size. Filippi (1964)
discusses the Clenshaw choice and shows examples
where it compares unfavourably.

If we are interested in keeping the end-point error as
small as possible we should use the Legendre choice.
Here the differences in accuracy are not something like
a factor of 2, as for the previous criterion, but can
amount to many orders of magnitude.

A possible drawback to the Legendre or the extremal
choice for the Picard method using large n is that it
requires the storage of large matrices. However, since
the elements are used sequentially, the storage may be
made on tape or other device without loss of machine
time.

It was pointed out by Mr. C. W. Clenshaw that for
second-order equations y =f(y, x) the "extremal" choice
would be the zeroes of the second derivative of the
stretched Chebyshev polynomial, and similarly for higher
degrees.
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Book Review
The Algebraic Eigenvalue Problem, by J. H. Wilkinson, 1965;

662 pages. (London: Clarendon Press; Oxford Univer-
sity Press, 110s.).

The first chapter of this book contains an account of the
mathematical background to the algebraic eigenvalue
problem, with emphasis on the manner in which the eigen-
system is related to the various canonical forms of a matrix.
The remainder of the book deals with the practical problems
involved in computing eigenvalues and eigenvectors on a
digital computer and in determining their accuracy.

Chapter 2 discusses the way in which the eigensystem is
affected by small changes in the elements of the matrix. This
leads to a chapter on error analysis of the type that the author
has especially pioneered. In Chapter 4 the earlier material
is applied to the problem of solving linear algebraic equations
and some consideration is given to the various numerical
methods that are available.

In Chapter 5 the author describes techniques for solving the
eigenvalue problem for Hermitian matrices. This is one of
the most important chapters in the book. In Chapter 6 the
author passes to the more difficult problem of computing
the eigensystem of a general matrix and deals in particular
with its reduction to condensed (Hessenberg) form. He then

goes on to describe how eigenvalues and eigenvectors of the
condensed matrix can be obtained. The two final chapters
deal with the LR and QR algorithms and with iterative
methods.

No review would give an adequate impression of this book
if it did not emphasize its massive character. Most of the
chapters are around 70 pages in length and the whole book
runs to about 650 pages. The chapters start with the briefest
of statements as to their scope and are packed with detailed
information. The book is designed for the professional
numerical analyst with research interests in the field, and in
no way caters for the less specialized worker who would like
to obtain an understanding of the problems at a less detailed
level. However, an exception must be made in the case of
the first chapter, which will undoubtedly be of real use to
many people who will not make much of the rest of the book.
In spite of all the detail, the author nowhere goes off into
realms of purely mathematical interest; as anyone who knows
him would expect, he keeps in sight throughout the ultimate
objective of practical computation on a digital computer.
The book is without doubt an important addition to the
specialized literature on numerical analysis.

M. V. WILKES
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