
A method for curve seeking from scattered points

By P. H. A. Sneath*

The paper describes a computer method for seeking curves through sets of scattered points in many
dimensions by adjusting the positions of the points to form smoothed curves. The sequences of the
points are obtained, and linear, branched and closed sequences can be found. The method is
applicable to many problems involving trends in characters or time in biology, medicine and other
fields.

1. Introduction
One of the pressing needs of numerical taxonomy
(i.e. numerical methods of biological classification) is a
method for finding trends or sequences in biological
data. Such trends are easily found intuitively when the
data are simple and when only one or two well-separated
trends are present, as represented by sequences of objects
that fall along smooth curves. They are more difficult
to find when sequences are complex (e.g. branched), or
when the characters of each object are numerous. An
example of a simple sequence is the trend produced by
growth of an individual; here a scatter diagram of age
against weight (or against many other variables) will
readily reveal the growth curve. A recent article by
Fry (1964) raises the problem of complex trends in an
acute form. He was working with marine animals
(pycnogonids), where the many available characters of
the animals change in a complex manner with age. In
addition several different but very similar species were
present in the samples under study. However, the usual
methods of numerical taxonomy (see Sokal and Sneath,
1963) tended to group together the young specimens of
all the species, while the oldest specimens of all the
species also grouped together. In fact, Fry's material
contained several separate and roughly parallel trends,
one for each species. What was needed was a way of
distinguishing these from the specimens alone, since
direct observation of the growth of the living animals
was not practicable. It is a familiar difficulty in creatures
showing considerable steady developmental changes,
such as grasshoppers. Here the sequence forks into the
two sexes. The position can be still more complex. In
termites, for example, the newly hatched nymphs are all
alike, but they develop into different adult forms:
workers, soldiers, queens, etc. Very similar problems
occur in other fields, such as the progression of symptoms
in diseases, or the evolutionary pathways in recent and
fossil material [e.g. Boyce (1964); Edwards and Cavalli-
Sforza (1964)].

Most methods are only adapted to single unbranched
sequences (except for some parts of graph theory, see
Rose, 1964). Single straight lines can be fitted by
regression analysis, and curvilinear regression can fit
quadratic, cubic and higher order curves. If some

variable is independent (such as time in a temporal
sequence) one can fit the curve easily but roughly by
simpler procedures (such as taking the mean of the
characters at successive time periods). But these methods
break down with forked or recursive trends. The single-
link clustering method (Sokal and Sneath, 1963, p. 180)
is in theory capable of picking out long parallel chains.
Yet when applied to some archaeological material in
which a sequence of cultural traits was present (Hodson,
Sneath and Doran, to be published) it was not satisfac-
tory, since it may bring together different ends of the same
sequence. It is also not adapted to forked sequences.
A modification of single-link analysis has been used
here (see Section 4) which is related to graph theory.
By this the nearest neighbour to a point is found, then
the point nearest to the second, and so on. This gives
the sequence separated by the smallest distances, but
difficulties arise with branched sequences in the
simplest form of this modified single-link analysis.
A more elaborate procedure has therefore been
developed.

If one had an infinitely finely-graded sequence of
points it would be easy to use the ordinary mathematical
concept of a continuous curve. In practice we have gaps
between the points and also some variation about the
ideal curve due to the variability of the entities which
are studied. What is in theory a smooth curve is in
practice a swathe of scattered points.

This paper describes a "gravitational" model in
which the analogue of the "gravitational force" is used
to move the scattered points from the swathe to the axis
of the swathe, thus giving a smooth curve. The pro-
gramming is not yet completed (an ALGOL program is
being written for the Atlas, since a large computer is
needed) but the technique is published here for those
who may wish to elaborate it further. Fig. 1 shows a
two-dimensional example with which the reader can
follow the steps of the method. Clearly there is a
forked trend present, with one limb directed to the left
and other directed downward but also kinked. Small
offshoots are also present, and a few outlying points
which are not obviously on the trends. For convenience
the description is broken into numbered sections and
arrays are labelled as in the ALGOL convention.
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- 0 8 -0 -4 + 0-4 C.I . + 0 8 + 1-2 + 1-6

Fig. 1.—Selected points from the Hertzsprung-Russell diagram
of the stars of globular cluster M3 adapted from a figure in
Bizony (1964, p. 135). The ordinates are Colour Index and
Apparent Magnitude. The Main Sequence of stars runs from
bottom to top left, and is poorly represented in the upper part.
The Hertzsprung Gap is shown near the left of the trend which

runs from the left toward the top right.

2. The collapsing process
The collapsing process (to move the points into

curves) is controlled by preset parameters:
2.1. Maximum movement permitted, M. The value

of M is the maximum movement that is allowed for
any point during any one cycle. It controls the fineness
of the collapsing process. If too large, all points will
collapse to the centroid of the system in one cycle and
this can also lead to undesirable to-and-fro movement
in later cycles. If M is too small the running time
becomes too long. However, M is reduced by linearity
(current value for a point is Z, see 2.5 below), and
finally becomes very small for most points, which causes
exit from the collapsing process since the points then
cease to move.

2.2. Size of a neighbourhood, R. The value of R
is the radius which defines the neighbourhood of a
point. Any other point within R of a point / is in the

neighbourhood of i. R determines the width of a swathe
which will collapse into a curve. If R is too small every
point will be a "lone point" without a neighbour, and
no sequences will emerge. If too large, all points will
form one line and the method will lack discrimination.
In general two swathes will not be recognized as distinct
if they are within R of each other.

2.3. Criterion of linearity, L. No a priori decision
can be made about whether a curve will be linear or of
higher order. Therefore the curves are determined from
short sections of length 2R which are made as linear
as is feasible. The criterion of linearity is L (observed
values are Y). This determines how close to a straight
line must be the other points in the neighbourhood of a
given point / before point i is "frozen" in its current
position. This happens when Yt equals L. If L is too
small (poor linearity is permitted) the swathe remains
diffuse and collapse is slow. If L is too large then all
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Curve seeking

points are forced into a single straight line, since we
are too exacting about linearity, and all curves are
straightened and finally pressed together.

2.4. The useful values of M, R, and L are discussed
in Section 5 since the factors affecting their choice can
be best seen from the next few sections.

2.5. Input of data. The input consists of a matrix
recording the values of n characters of / entities, (with
reference numbers from 1 to /). This forms array
A[\:t, l:n]. Provision could perhaps be made for
missing data, but this is not considered here. The
characters should be suitably scaled, either into a fraction
of the maximum range (giving values between 0 and 1)
or else standardized with each character having a mean
of zero and unit variance (giving values in practice
between about —3 and +3). Unsealed characters could
be used if the ranges were not too dissimilar. The
method is based on a model of continuously varying
characters, but could perhaps work with 1, 0, characters.
Each entity is represented by a point in n-dimensional
Euclidean space, so that the positions of the t points
are obtained by treating the values of the n characters
as the n co-ordinates, given for any point the characters
with values *,, xi, xu . . . xn.

If these points are scattered in swathes then "gravi-
tation" would cause them first to collect into curved
sequences; this is achieved by making the "gravitation"
inversely proportional to the square of the distance, thus
first pulling together the closest points. Secondly, the
curves would shorten and collapse into one point at the
centroid of the system. The second collapse is checked
by "freezing" the points (by reducing M for each point)
when a neighbourhood becomes acceptably linear (by
the criterion L). The maximum movement allowed,
therefore, differs from one point to another, and for
point ;' is symbolized by Z;. This preserves the curved
sequences.

2.5.1. The collapse will reduce to some extent the
overall scatter, thus reducing the scale of the whole
system. This reduction can be recorded by estimating
the total variance about the common mean point
Xx, xi • • • xn, whose coordinates are preserved in Array
5[l:n] since they are required later (2.13). This is
therefore estimated as the Original Variance,

1 u=n i=l

°2 = - s s (*„ - xuy
original ' «=1 /=!

The Final Variance is estimated at the end of the col-
lapsing process (see 2.12).

2.6. Calculation of force acting on a point /. The
"force" acting on a point / (commencing with / = 1) is
now calculated. Point ; is compared in turn with all
the rest. The array B[\ :n] holds the current com-
ponents of the force in the n dimensions, and this is
initially filled with zeros. The array C[l :t] contains
the current value of Z, for each point i (/ = 1, 2,. . . t),
and is initially filled with the preset value M. If Z,
becomes zero then point i cannot move, and the next
point is taken.

2.6.1. The force acting on point i from point j is
is

called Fu and it is set equal to -ji where djj is the total
u.squared distance between / and j , and AT is a constant

which is here taken as unity, but may be adjusted if
required. Then

u=n
dy = 2J (Xju Xju) .

«=1

2.6.2. In order to partition the total force Fu into the
components in the n dimensions one calculates the force
due to dimension u as

FUu = {u = 1, 2, . . . n;

Having calculated the uth component of the force on
/ due to j , one adds all such values (j = 1,2, ... t;j =£i)
into array B. Thus B[u] contains the value of the wth
component, Fiu, of the total force vector acting on i.
The absolute value, Fh of this is required:

Fi =

2.7.1. Next one tests if F,- is greater than Z; (where
Z; in location C[i] is the current value of the maximum
movement permitted to /'. If Ft < Z, then point i is
"moved" by the distance Fh that is it is "moved" in the
n dimensions by a distance equal, for dimension w, to
Fiu. This is done by adding algebraically the value of
Fiu to the value in array A[i, u], and so, in turn,
Fn, Fi2, . . . Fin t o l o c a t i o n s A [ i , 1 ] , A [ i , 2 ] . . . A [ i , n \ .
However, if F, > Z, then point i is moved only by a
proportionately smaller amount, (F,KZ,)/F; for dimension
M. It is probably immaterial that the distance moved is
abruptly checked at Z,; a smoother relation from an
asymptotic function (such as arctangent) could be used.

2.8. Having moved point 1, the next step is to move
points 2, 3, . . . t by returning to 2.6.2. It is true that
having moved the points previously considered the
system is not in its original state, but with a sufficiently
small value of M this is immaterial, and it also obviates
seesawing of the points, which could otherwise be slow
to cease.

2.9. All points have now been moved one step, and
a second cycle of movement can be started. One must
now discover if the movement has been sufficient to give
the required curves. This may occur more quickly in
some parts than in others where the swathes are more dif-
fuse. One needs therefore a test of linearity over small
distances, so that areas where collapse is sufficient will
have their points "frozen." For this the neighbourhood
of each point (Section 2.2) is examined for linearity.
Since the criteria of linearity are varied, discussion of a
suitable criterion is postponed to Section 3. The
observed linearity, Y-, of the neighbourhood of point i
is a quantity varying from 0 (for non-linearity) to 1 (for
all points in the neighbourhood of / lying on a straight
line). The points in the neighbourhood of i are found
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Curve seeking

using d2 (see 2.6.1) and determining if d2 is less than
R2 (Section 2.2).

2.10. If y, is greater than the preset criterion L
(Section 2.3) then linearity is acceptable, and Zt is
reduced to zero, thus preventing any more movement
of point i. If Y, < L, then replace Z, by M(l — Yf).
Other functions of Y could be used, but this allows
free movement when linearity is poor and drastically
reduces it as linearity becomes high. The function
allows a value of Z, which was previously zero to become
positive again if required by the point configuration,
but this carries some risk of remobilizing frozen areas
to an undesirable extent. If so, then Z,- can be replaced
by M(l — Y2) only if Z, > 0; otherwise Z, remains
zero. This second alternative carries the danger that
near a fork the points at the branch will be pulled to the
ends of the limbs of the fork, since the latter, being
linear, will be irreversibly frozen, and hence the sequence
will be broken by the appearance of a gap larger than
R. The first alternative seems preferable, therefore,
though it would allow the slow collapse of the arms of
a Y-shaped sequence.

2.10.1. All points in turn are tested for linearity and
the Z values in array C are adjusted.

2.11. All t points have been tested for linearity, but
several cycles of movement will be needed to reduce the
swathes to curves. The cycles are entered at 2.6.1 and
repeated until linearity is acceptable, but not too
stringent. Non-linearity is due to curves and also to
branches (since points near the fork must also have
poorly linear neighbourhoods). If exit from the cycles
is too delayed, the curves may be stable (because Z; has
been reduced to zero) but the points near the fork may
move enough to break the sequence (which occurs if a
gap appears that is more than R). It seems possible
that points near forks may be rather unstable, and so
it would be safer to stop the collapsing fairly early,
despite the danger that some very diffuse parts of the
system may not have collapsed sufficiently. The degree
of total movement in a cycle might be an adjunct to
controlling this, since when this became small it would
indicate that collapse was nearing completion. It could
be obtained by summing Ft.

1 '~'
2.11.1. One can therefore test - 2 (1 — Zj) > L.

t ;=i
If not, another cycle is entered at 2.6.1; otherwise one
proceeds to 2.12.

2.12. The collapsing process being completed, the
points should now lie in sequences which are linear over
short distances but can be curved or branched on a
larger scale. The overall contraction of the system is
now found by estimating the Final Variance ofnal (see
2.5.1) from the final x values.

2.13. The degree of collapse from the original con-
figuration to the curves that have been found may be
measured by estimating the variance of the difference
between the original and final positions of the points:

°(original - final) = ^original — °Hnal

where:
1 u=n i=t

= T S Yi
* u = l (=1

t final %u original.) •

The original means are in array S. This statistic
cannot offer an absolute criterion for successful collapse
since there is no absolute criterion for the final curves.

Section 3 discusses criteria of linearity, so the next
program step is at 4.2.

3. Criteria of linearity
The test of linearity over small distances must be

quick, simple and sensitive to small departures from
colinearity. A convenient test uses the relation between
the sides of a triangle: the sum of the two shorter sides
is greater than the longest side. The excess is a measure
of linearity, and if it is zero the three vertices are colinear.

For a point i the other W points in its neighbourhood
(i.e. within R) are found; the most distant pair of points
is then determined by searching the matrix of interpoint
distances of the neighbourhood i for the largest value.
These two points may be called a and b (i can itself be
one of them, but usually is not). Then for all W points
in the neighbourhood calculate:

Y = \ - dib - dab).

This coefficient thus represents one minus the propor-
tionate average excess distance in travelling from a to b
via the other points instead of direct. It lies between 0
(e.g. for an equilateral triangle) and 1 for complete
colinearity. For points evenly spaced within a circle
it is about 0-84, and somewhat less for points in a
hypersphere of many dimensions.

This coefficient has also a useful property: for a given
perpendicular distance h from the line ab it is higher
when i is equidistant from a and b than when it is close
to one or the other (equilinear points lie on an ellipse
with foci at a and b). This allows an obtuse triangle
to have a better linearity score than an acute one, and
hence facilitates fitting of smooth curves to the points.
For Y close to 1, if / is equidistant Y approaches
1 — (2h2/dab), and when / is close to a or b, Y approaches
l - {hjdab).

The perpendicular distance h is a more sensitive test
of departure from linearity. It can be found by dividing
twice the area of the triangle by dab. The area is obtained
from the usual formula, as y/[s(s — dab)(s — dai)(s—dib)]
where s = i(dab + dai + dib). It requires a good deal
more computation, however.

If the neighbourhood of i contains no other point, or
just one, then Y is indeterminate, and is taken as 1.
This serves to anchor down isolated points, isolated
pairs and free ends of sequences, but if this proves too
rigid Y can be taken as a number less than 1.

4. Finding the sequences
Finding the sequences is the most involved procedure in

the process, because of the many topological alternatives.
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4.1. There is no difficulty in output of the final
positions of the points; their co-ordinates are given by
printing the final values of array A. These are almost
equivalent to the projection of the points onto the curves
representing the idealized sequences, and thus bear some
resemblance to loadings in factor analysis. But this
table is not a handy summary and the sequences of the
points with their reference numbers are also needed.

4.2. Owing to the complexity of the topology the
sequences are assembled in unbranched sections, called
limbs. A limb terminates either (a) as a free end, or
(b) at a fork in the sequence, or (c) when the starting
point is reached because the sequence is a closed loop.
The limbs are assembled as far as possible into complete
sequences, but branched sequences are printed as limbs
together with an indication of the identity of the branch
point and the symbol B to draw attention to it. Thus
the sequences 1, 2, 3, B4; 20, 21, 22, B4; 16, 15, 14, B4,
would be readily seen to form a Y-shaped sequence with
point 4 at the junction. The three arms are treated as
separate sequences in the search process and are thus
referred to, though they should properly be called sub-
sequences (but not limbs; an unbranched sequence has
two limbs).

A point can be of several kinds with respect to the
topology. With their symbols they are: "sequence
starters" (S), "limb enders" (E), "branch points" (B),
"lone points" (SE), "sequence closer" (C) and "chain
points" (no symbol).

4.2.1. A sequence starter, S, is the point at which the
search of a limb is begun. It can be deleted from the
system when its sequence is complete. It may also be
in practice a limb ender if the sequence is a closed curve.
When the first limb ends, the search is recommenced at
S in order to find the other limb (except for closed
sequences).

4.2.2. A limb ender (E) is the point at a free end of a
sequence, such that no other point (which has not been
found previously in the search) lies in its neighbourhood,
i.e. within a distance of R. Branch points (B) are also
in practice limb enders, but are treated separately. A
limb ender can be deleted from the system when its limb
is complete.

4.2.3. A branch point, B, is one which has a non-linear
neighbourhood, as shown by Y < L. At the fork there
will probably be several points of this kind, since there
will be some overlap between adjacent neighbourhoods.
A branch point terminates a limb and leads to a secon-
dary search for contiguous branch points in order to
identify unambiguously the fork in question. Branch
points are never deleted.

4.2.4. A lone point is marked SE since it both starts
and ends a sequence of one, and can then be deleted
from the system. It is a point with no other point
within a distance of R.

4.2.5. A sequence closer (C) is found in a closed
sequence, and is the sequence starter if this is found a
second time.

4.2.6. Points in the middle of limbs which have linear

neighbourhoods are chain points. They are not marked
when printed. They can be deleted when their sequence
is complete.

4.2.7. In order to keep a tally of these different kinds
of point, four arrays are used: array G[l:t] which
records the status of the points in the current sequence;
//[I:/] which records deletions and branch points;
JP[l:f], which records contiguous branch points; and
Q\\:t + 1] which records the reference numbers of the
points in the current sequence.

4.3. The array H is filled with +1 values. Then for
each point i (from 1 to / in turn) the neighbourhood is
tested to see whether it is empty or non-linear (7, < L).

4.3.1. Points with empty neighbourhoods are lone
points and are printed in the form S i E, while H [i] is
set to — 1 to indicate deletion of point /.

4.3.2. If the neighbourhood is non-linear the point is
printed with the symbol B (as a check list) and H [i] is
set to 0.

4.4. The array Q is filled with zeros and arrays G and
P are filled with +1 values. This becomes the start of
compiling a sequence.

4.5. The first point in array H that is marked +1 is
used as the sequence starter (which cannot be a lone
point, any other deleted point, or a branch point).
This point, j , is marked as S by making G[j] zero, and
its reference number j is placed in Q[l].

4.6. Point j is now used as the centre of a neighbour-
hood. All the other t — 1 points are first checked in
array H; if they are marked — 1 they have been deleted
and the next point is considered. If all other points
are —1 the sequences have all been found (go to 4.12).
The remaining points marked +1 or 0 are now tested
to see if they are within R of j and if so the distances
of these v points are noted.

4.6.1. Each of the v points is now checked in array G
to confirm that it is marked +1 . If not, it has been
used previously in the sequence, and the next point is
considered. If none of the v points are +1 , then there
is no unused point available and the limb ends (go to
4.8). The nearest of the v points which are marked +1
is then found; this is point k.

4.6.2. Point k is the nearest available point to j , but
it may be a branch point. H[k] is therefore tested, and
if zero, go to 4.7 for the special subroutine for blanch
points.

4.6.3. If H[k] is -f- 1, place the reference number of
k in Q[2], and set G[k) to —1. The search for the
nearest neighbour to k is continued by re-entering at
4.6 using k as the centre of the neighbourhood.

4.6.4. Successive nearest neighbours are thus noted in

em, ep], epi....
4.7. The nearest neighbour is a branch point, and this

terminates the limb. All contiguous branch points are
now required. The neighbourhood of k is searched for
the nearest point which is marked 0 in array H, and
+1 in array P. Its reference number is recorded in the
next available location of array Q, while in P it is marked
zero to prevent it being found a second time. The
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successive nearest neighbours which are branch points
are thus obtained. When no more can be found in the
last neighbourhood the limb is ended (go to 4.9).

4.8. No available point can be found in the neigh-
bourhood of the last point in the limb. The limb has
come to an end for one of two reasons:

4.8.1. The nearest point which is marked +1 in H
is tested to see if it is marked 0 in G and is also within
a distance of R. If so, it is the sequence starter (4.5),
to which the sequence has led back. The sequence is
therefore a closed loop, and it is complete. It is printed
out commencing with the symbol S and the reference
number of the sequence starter, and ending with this
number repeated and the symbol C to indicate closure.
The sequence is available in correct order in array Q
from Q[\] to the first location containing a zero. The
program goes on at 4.12.

4.8.2. If the conditions in 4.8.1 are not satisfied the
limb has a free end. It is now necessary to find the
other limb.

4.9. The other limb is found by returning to the
sequence starter (0 in array G), and entering the
program at 4.6. This is followed as before except that
in 4.6 and 4.7 the reference numbers are entered in
locations Q[t + 1], Q[t], Q[t — 1] . . . etc. The use of
t + 1 locations ensures that at least one remains zero
and marks the ends of the limbs. On return to 4.9 for
the second time the program leads to 4.10.

4.10. The array Q now holds the complete sequence
in two sections, and it is printed in the order Q[t + 1],
Q[t]Q[t — 1] . . . until a zero is found, and then
<2[1], Q[2] . . . until a zero is found again.

4.11. At print-out the reference numbers of the points
are printed with the appropriate symbols by examining
array H for branch points. The first and last in the
sequence are marked I; if they are not marked B. If
required the Euclidean distance between successive
members of the sequence can also be printed (calculated
from array A) together with the cumulative sum. This
would assist study of the spacing and linearity of the
sequence.

4.12. The points in the sequence are then marked —1
in array H except for branch points which remain as
zero. Then the program returns to 4.4 if any points
in H are still marked +1- If not, the program is
completed.

5. Choice of preset constants; considerations affecting
their size

Experience will be needed before firm advice can be
given on the best values to choose for the preset
constants M, R, and L. They will clearly depend in
part on the number of points. A few points cannot
give a very significant sequence. In particular R must
be fairly large or no sequences will appear.

5.1. It would seem reasonable for R to be so chosen
that generally several points fall into one neighbourhood,
and an appropriate value would be to make a rough

X2

Fig. 2.—Forces acting on a point i from another point j for
two dimensions, 1 and 2.

The total force is inversely proportional to the square of the
distance between i and j . It is partitioned into a component
in dimension 1, Fu which is proportional to the distance
between i and j in dimension 1, i.e. (jt/i — x,0 and into the
component F2 in dimension 2, proportional to (XJI — xn)-

estimate of the average range of the characters and
choose for R a value which included 3-5 points
(assuming points to be scattered more or less randomly
through the ranges). For standardized characters R of
10/^ to 20/1 would seem reasonable.

5.2. The value for M depends largely on the computer
time that is readily available. Probably at least ten
clustering cycles are needed, which suggests an upper
limit for M of about 0-02 of the average range, or
about 0-1 for standardized characters (assuming swathes
about 1/5 the width of the whole system).

5.3. Suitable values of L are less easy to suggest. If
L is too high any curves will be forced into straight
lines, and forked sequences will have their limbs brought
together and fused. The choice of L also depends on
R, for if R is increased more points will in general
come into a neighbourhood, and linearity will decrease.
Moderate non-linearity to permit gentle curves can be
allowed by taking the curvature which would permit
one circular sequence to fit comfortably into the
character space. If 3-6 points are to be in each neigh-
bourhood this would give a neighbourhood that sub-
tended an arc of about 10/f radians, and the circle could
be allowed a radius of \ of the average range (or for

388

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/8/4/383/400875 by guest on 13 M
arch 2024



Curve seeking

1 1 1 1

- 0 8 -0-4 + 0-4 C. I . + 0-8 + 1-2 + 1-6

Fig. 3.—Representation of Fig. 1 as a density diagram with the discrete points replaced by a field. This is very similar to a
poorly-focused photograph of Fig. 1

standardized characters a radius of 1). For points on
an arc of 6 radians where 6 is small, Y has a value of
about 1 — (02/32) for three equally spaced points, and
about 1 — (#2/38 • 4) for five equally spaced points. An
arc of 10// radians would require L of about 1 — (3/f2)
to allow the desired degree of curvature. This could
be used as a guide to the upper limit of L.

6. Discussion
The procedure described here is undeniably complex.

Indeed it is surprising how difficult it is to imitate on a
computer a process which is swiftly accomplished by the
eye whenever the data can be presented graphically in
a suitable form (e.g.). Fig. 4. Yet a consideration of the
mental steps involved suggests that they are similar in
many ways to the process given here. One does "move"
points mentally, and fit curves through swathes, and
follow sequences first one way and then back the other
way. No very great simplification has come about from
pondering on the problem. One alternative would be
to replace each point by a field, which would lead to
bands of force replacing the swathes, and which can be

mimicked by blurring the points in Fig. 1 (as, for
example, putting the picture out of focus). Fig. 3 shows
a density diagram of this kind based on Fig. 1. But
one is still faced with the problem of tracing these bands
through multidimensional space, and whether one used
an envelope or contour method (such as helical searching
round limb along surfaces of equal density) or fitted
lines through the bands, it seems unlikely that the
process would be much simpler to that given here. It
is much to be hoped that simplification and improve-
ment can be made in the future.

The "inverse square law" of gravitation may not be
the best, and it would be interesting to try in Section 2.6
formulae where F = K/d}; with A other than 2. The
analogy with three-dimensional space would require A
to be n — 1. However, the main effect of changing A will
probably be to change the effective range of the attractive
force, with high A giving close-range forces. Another
interesting development would be to modify the method
to find surfaces instead of curves. This would require
substituting a criterion of planeness for the criterion of
linearity (the analogue of the criterion used here would
be the relation between the areas of the faces of a
tetrahedron). This might have applications in fields
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Fig. 4.—Illustration of complex curve-seeking. On the left is a figure in three dimensions, xv x2, x3, consisting of points forming an
H with an O around the crossbar. On the right is the same figure with the points randomly perturbed a small amount. The hope
is that from the latter it will be possible to recover the original configuration together with the sequences that describe the topology

such as geology. Although it is not possible to postulate
a priori the algebraic order of the curves, so that the
usual criteria of goodness-of-fit are not available, it
would be possible to calculate the least-squares goodness-
of-fit of the empirically observed line segments which
join successive members of the sequences, and this
would provide some test of the adequacy of the col-
lapsing under different conditions.

There are a number of points which cannot be satis-
factorily cleared up until some examples have been tried.
One of these is whether within a diffuse cloud of points
one might get several spurious curves during collapse.
It seems possible that chance aggregations might collect
more points about themselves and lead to this effect.
Another problem is the instability of branch points,

which has been mentioned, but which seems difficult to
study theoretically.

A further development would be to reduce the
dimensionality of the final positions to two (by a process
such as principal component analysis with retention of
only the first two vectors). One could then print out a
suitable diagram of the position of the points in two
dimensions, which would allow the advantages of visual
study.
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Nonlinear programming test problems

Sir,
In a recent article by M. J. Box* on constrained optimization
there is included a small five-variable nonlinear programming
problem which is described as a very difficult problem.
Since it is one of the few examples of a nonlinear programming
problem given in the literature, it is likely to be used as a test
problem by other persons working in the area of nonlinear
programming. Persons using it as a test problem ought to
be aware that the problem is easily converted to a linear
programming problem. The form of this problem given in
Box's article obscures the fact that this can be done by a
simple transformation. It was in a discussion of this problem
with Professor C. E. Lemke, of Rensselaer Polytechnic
Institute, that we noticed this simple transformation.

The problem can be rewritten as follows:

mm = *0
x ^

subject to

0< anxi +
5

; = 2

2

JT, < b, i = 1, 2, 3

x, > 0, l - 2 < * 2 < 2-4, 20-0< 60

9 0 < 9-3, 6-5< 7 0 .

Then by letting yt = xxxt, i = 2, 3, 4, 5 and ;y, = x, we
obtain the following linear programming problem:

min -| g(y) = ,

o< S
y,>0i=l,5

y2-\-2yx>0,

5

1 = 1,2,3

-y2> 0

* Box, M. J. (1965). "A new method of constrained optimiza-
tion and a comparison with other methods," The Computer Journal,
Vol. 8, p. 42.

^4

^5

— 20

- 9 -

- 6 -

( O ^ i

0y,5

> 0,
s 0,

»o,

6i

9

7

i - > 3 :

-y*>

-ys>

> 0
0

0.

I solved this problem on the IBM 7040 using linear pro-
gramming routine LP-40, and obtained the following optimal
solution after six simplex iterations:

g = - 5,280,344-9
yx = 4-53743, y2 = 10-88983, y3 = 272-24584
y4 =42-19811,^5 =31-76202

which in terms of the original variables gives/= —5,280,344 • 9

x , = 4-53743, x2 = 2-40000, x3 = 6000000
x4 = 9-30000, xs = 7-00000.

It is interesting to note that the original nonlinear problem
is a non-convex problem; the feasible region is not a convex
region nor is the objective function convex. Yet the trans-
formation results in a convex, in this case linear, programming
problem.

The values of the constants in this form are

a01 = - 8,720,288-795
a02 = - 150,512-524
a03 = - 156-695
a04 = -476,470-319
a05 = -729,482-825
an = - 145,421-4004
ai2 = 2,931 1506
oI3 = - 40-4279
a,4 = 5,106 1920
al5 = 15,711-3600
b0 = -24,345-0
b{ = 294,000-0

Advanced Research Division,
Research Analysis Corp.,
McLean, Virginia, U.S.A.
3 August, 1965.

a2l = - 155,011 1055
a22 =4,360-5334
a23 = 12-9492
a24 = 10,236-8839
a25 = 13,176-7859
a3l = - 326,669-5059
a32 = 7,390-6840
a33 = -27-8987
a j 4 = 16,643 0759
a35 = 30,988 1459
b2 = 294,000 0
b3 = 277,200 0

Sincerely yours,
W. CHARLES MYLANDER
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