Curve seeking

Edwards, A. W. F. and Cavalli-Sforza, L. L. (1964). Reconstruction of Evolutionary Trees. Pp. 67-76 in Phenetic and Phylogenetic Classification. Systematics Association Publication No. 6. (London: Systematics Association, xi +164 pp. illust.).
Fry, W. G. (1964). "The Pycnogonida and the Coding of Biological Information for Numerical Taxonomy." Systematic Zoology, Vol. 13, pp. 32-41.
Hodson, F. R., Sneath, P. H. A. and Doran, J. E. A study of bronze fibulae from the La Tène culture (to be published).
Rose, M. J. (1964). Classification of a Set of Elements, Computer Journal, Vol. 7, pp. 208-211.
Sokal, R. R. and Sneath, P. H. A. (1963). Principles of Numerical Taxonomy. (San Francisco and London: W. H. Freeman, xvi +359 pp. illust.).

Correspondence

To the Editor, The Computer Journal.

Nonlinear programming test problems

Sir,
In a recent article by M. J. Box* on constrained optimization there is included a small five-variable nonlinear programming problem which is described as a very difficult problem. Since it is one of the few examples of a nonlinear programming problem given in the literature, it is likely to be used as a test problem by other persons working in the area of nonlinear programming. Persons using it as a test problem ought to be aware that the problem is easily converted to a linear programming problem. The form of this problem given in Box's article obscures the fact that this can be done by a simple transformation. It was in a discussion of this problem with Professor C. E. Lemke, of Rensselaer Polytechnic Institute, that we noticed this simple transformation.

The problem can be rewritten as follows:

$$
\min _{x}\left\{f(x)=b_{0}+a_{01} x_{1}+\left(\sum_{j=2}^{5} a_{0 j} x_{j}\right) x_{1}\right\}
$$

subject to

$$
\begin{aligned}
0 & \leqslant a_{i 1} x_{1}+\left(\sum_{j=2}^{5} a_{i j} x_{j}\right) x_{1} \leqslant b_{i} \quad i=1,2,3 \\
x_{1} & \geqslant 0,1 \cdot 2 \leqslant x_{2} \leqslant 2 \cdot 4,20 \cdot 0 \leqslant x_{3} \leqslant 60 \\
9 \cdot 0 & \leqslant x_{4} \leqslant 9 \cdot 3,6 \cdot 5 \leqslant x_{5} \leqslant 7 \cdot 0
\end{aligned}
$$

Then by letting $y_{1}=x_{1} x_{i}, i=2,3,4,5$ and $y_{1}=x_{1}$ we obtain the following linear programming problem:

$$
\begin{aligned}
& \quad \min _{y}\left\{g(y)=b_{0}+\sum_{j=1}^{5} a_{0 j} y_{j}\right\} \\
& 0 \leqslant \sum_{j=1}^{5} a_{i j} y_{j} \leqslant b_{i} \quad i=1,2,3 \\
& y_{i} \geqslant 0 i=1,5 \\
& y_{2}-1 \cdot 2 y_{1} \geqslant 0, \quad 2 \cdot 4 y_{1}-y_{2} \geqslant 0
\end{aligned}
$$

[^0]\[

$$
\begin{array}{ll}
y_{3}-20 \cdot 0 y_{1} \geqslant 0, & 60 \cdot 0 y_{1}-y_{3} \geqslant 0 \\
y_{4}-9 \cdot 0 y_{1} \geqslant 0, & 9 \cdot 3 y_{1}-y_{4} \geqslant 0 \\
y_{5}-6 \cdot 5 y_{1} \geqslant 0, & 7 \cdot 0 y_{1}-y_{5} \geqslant 0
\end{array}
$$
\]

I solved this problem on the IBM 7040 using linear programming routine LP-40, and obtained the following optimal solution after six simplex iterations:

$$
\begin{aligned}
g & =-5,280,344 \cdot 9 \\
y_{1} & =4 \cdot 53743, y_{2}=10 \cdot 88983, y_{3}=272 \cdot 24584 \\
y_{4} & =42 \cdot 19811, y_{5}=31 \cdot 76202
\end{aligned}
$$

which in terms of the original variables gives $f=-5,280,344 \cdot 9$

$$
\begin{aligned}
& x_{1}=4 \cdot 53743, x_{2}=2 \cdot 40000, x_{3}=60 \cdot 00000 \\
& x_{4}=9 \cdot 30000, x_{5}=7 \cdot 00000
\end{aligned}
$$

It is interesting to note that the original nonlinear problem is a non-convex problem; the feasible region is not a convex region nor is the objective function convex. Yet the transformation results in a convex, in this case linear, programming problem.

The values of the constants in this form are

$$
\begin{aligned}
& a_{01}=-8,720,288 \cdot 795 \\
& a_{02}=-150,512 \cdot 524 \\
& a_{03}=-156 \cdot 695 \\
& a_{04}=-476,470 \cdot 319 \\
& a_{05}=-729,482 \cdot 825 \\
& a_{11}=-145,421 \cdot 4004 \\
& a_{12}=2,931 \cdot 1506 \\
& a_{13}=-40 \cdot 4279 \\
& a_{14}=5,106 \cdot 1920 \\
& a_{15}=15,711 \cdot 3600 \\
& b_{0}=-24,345 \cdot 0 \\
& b_{1}=294,000 \cdot 0 \\
& \\
&
\end{aligned}
$$

$$
\begin{aligned}
a_{21} & =-155,011 \cdot 1055 \\
a_{22} & =4,360 \cdot 5334 \\
a_{23} & =12 \cdot 9492 \\
a_{24} & =10,236 \cdot 8839 \\
a_{25} & =13,176 \cdot 7859 \\
a_{31} & =-326,669 \cdot 5059 \\
a_{32} & =7,390 \cdot 6840 \\
a_{33} & =-27 \cdot 8987 \\
a_{34} & =16,643 \cdot 0759 \\
a_{35} & =30,988 \cdot 1459 \\
b_{2} & =294,000 \cdot 0 \\
b_{3} & =277,200 \cdot 0
\end{aligned}
$$

Sincerely yours,
W. Charles Mylander

[^0]: * Box, M. J. (1965). "A new method of constrained optimization and a comparison with other methods," The Computer Journal, Vol. 8, p. 42.

