
A lower estimate of the cumulative truncation error
in Milne's method

By A. C. Smith*

A method is given for the estimation of the cumulative truncation error which may be substantially
less than the usual bound.

1. Introduction
In the numerical integration of the differential equation

(1.1)
= Jo

using Milne's predictor-corrector method:

Ah ,

. . . . 28

yn+ i(c) = yB-\+ 3 ( ^ - 1

h5

where Tn= - ^

The cumulative truncation error after n steps,
en = yn — zn> satisfies the difference equation

en+ xgn+, - Tn (2.3)

(1.2)

(1.3)

a bound for the magnitude of the cumulative error due
to truncation is given (see Milne, 1953), by

where

g = ^T; and gn = g(xn, yn),

yn lying between yn and zn.

Let S2r(g) = ^(g0

. , 1,

+2g2+...

. . . + 4 g 2 , _ , +g2r) (2.4)

£n =
h4M

•••+4g2r+g2r+l) (2-5)180G | V i -
be the even and odd "Simpson" sums of gn.

where n is the number of steps, G the maximum value of Then

^- I and M the maximum value of I v(5)|. G is estimated
OVI ' '

from the values of ( J obtained during the

computation, and M from the values of

hS<n(g) = fg\x)dx + "^
0

.(2n + l)A n/j5
hS2n+ ,(g) = j g(x)dx + O0

(1.5)

En is obtained by solving a difference equation with
constant coefficients which dominates the difference
equation for the cumulative error (see (2.3) below).
The bound En is frequently very conservative.

2. Asymptotic solution of the difference equation

Using Milne's notation let yn be the calculated, and zn

the true value of the solution.
Then

zn+, = zn_, + ^(z^_,

Moreover

J2n/i

L3

(2.6)

(2.7)

(2.8)

(2.9)

Hence it follows that

(2.10)

n + zn+l) + Tn (2.1)
Consider now the difference equation

* , .
yn+1 = yn-\ + ^ O d + 4y; + ^;+i) (2.2)
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Milne's method

When / i=0, the complementary function is A0+Bq(~ 1)", The foregoing results suggest that
where Ao and Bo are arbitrary constants. v — A \hR

.Next let
v — A *UA(\<L-U2A(\A-U1A<\JL- n i ^ m a v b e a s ° l u t i ° n °f the difference equation (2.11),

n u i i v / i z \ / i s\ J i \ J w h e r e

Substituting in (2.11) and equating coefficients of like
powers of h we obtain ^2n(i

(2.19)

1

At(2n + \) =

A2(2n) =
A2(2n + l) =

+ A0S2n+i(g)

+ S2n(gAl)

(2.13)

(2.14)
etc.

Let ,4,(0) = 0 and ,4,(1) = i(g0 + gl)A0.

Then

hA,(2n) = A0hS2n(g)

+ #2«+i)

+ O(//3) in virtue of (2.10). (2.15)

Hence, whether n is even or odd we may write

hA,(») = Aofg(x)dx + O(/*3). (2.16)

Again

h2S2n(gAt)^
h4\

4g2n-xAx{2n-\)+g2nA^2ri)]

\gx fg(x)dx + 2g2fg(x)dx + ...

g2nfg(x)dx + O(nh*)]

= Ao \2g\u)du fg(x)dx
0 00 0

J
(2.17)

Take /(2(0) = 0, +

Then

h2A2(2n

h2A2(2n) = ^

). (2.18)

gin)
(2.20)

Substituting (2.19) in (2.11) and using (2.10) it can be
seen that the residue is O(h2).

Similarly the solution corresponding to Bo(— 1)" is
found to be

( - \)"B0 exp [hRn(k)] j
where kn = ( - \)"gn )

(2.21)

Thus the complementary function of (2.11) is

Ao exp [hRn(g)] + ( - l)"B0 exp [hRn(k)] + O(h2).

(2.22)

If we assume that Tn in (2.3) can be expressed in the form

C06» + Do where 62 ̂  1

and substitute

[Co + hCt(n) + h2C2(n) (2.23)

a n d [D0 + h D i ( n ) 2 ( )

it is found that the particular solution

0r$n + l _
e xP (2-24)

- Z ) 0 ^ « - l + exp [*/?„(?)]]

where />„ = 6"gn and gn = ^ngn

satisfies the difference equation (2.3) with residue O(h2).

The complete solution of (2.3) can then be written as

en = Ao exp [hRn(g)] + ( - 1)"BO exp [hRn(k)]

FQn + l _ 0

[
Q

e xP

- / ) 0 [^» - 1 + exp[///?„(<?)]] + O(/>2). (2.25)

Ao and Bo are arbitrary constants which can be deter-
mined on the assumption that

e0 = ex = 0.
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3. Example (See Nielsen, 1956)
, _ 2 x - l i

x2

h = O-l

x0 = 1
Jo = 2

Milne's method

The exact solution

(3.1)

n

0

1

2

3

4

5

6

7

8

9

10

11

12

10

11

1-2

1-3

1-4

1-5

1-6

1-7

1-8

1-9

2-0

2-1

2-2

y

2 0000 0000

2-3148 5619

2-6589 3596

3-0317 3475

3-4328 9892

3-8622 0178

4-3194 6504

4-8045 7482

5-3174 3008

5-8579 6919

6-4261 2946

7-0218 7604

7-6451 6696

T x lOio

-80482

-36009

-15908

-8946

-4804

-3175

-1675

-1346

-627

-668

-226

-391

g

10600

0-9392

0-8409

0-7650

0-7039

0-6532

0-6101

0-5729

0-5403

0-5115

0-4858

0-4627

0-4417

ion is y = x2 ( l + exp (1 - l ) ) . (3.2)

Substitution in (1.4) gives El2 = 14,100 X 10"8 (3.3)

Approximating Tn by —146 x 10" 7 x ( r V and assum-
ing that eo — e{= 0, the values of e2, e3 and e4 cal-
culated from (2.3) are found to be

e2 = 75,105 x 10-1 0

e3 = 49,096 x 10"1 0

e4 = 102,568 X 10~10.
(3.4)

Putting n = 2 and 4 in (2.25) and equating to e2 and e4 in
(3.4) we find that

Ao = 2,987 X 10- 8

Bo= - 3,412 x 10" (3.5)

Substituting for Ao and Bo in (2.25) with n = 12 we
obtain

e,2 = 3,762 x 10-8 .

The value of (3.2) when x = 2-2 is 7-6451 5888.
The actual error is thus 808 X 10-8.

(3.6)
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Book Review

Optimization Theory and the Design of Feedback Control
Systems, by C. W. Merriam III, 1964; 390 pages.
(Maidenhead: McGraw-Hill Publishing Company Ltd.,
112s.).

This book, by a well-known figure in both academic and
industrial research into advanced control problems, is a
thorough introduction to Optimal Control Theory as applied
to continuous dynamic systems. Its clear exposition starts
with the simplest problem, that of choosing the best para-
meters for a fixed controller, and continues through optimum
linear, and linear optimum systems to the design of non-
linear control systems.

Full explanations of each point are given, aided by simple
worked examples, with illustrated solutions. Included is an
account of the application of variational calculus, dynamic
programming, and the "maximum principle" to control
problems, showing the relation and the differences between
the three methods. There is an enlightening chapter on the

numerical solution of the two-point boundary problem.
The appendices, apart from a summary of the extensive

basic notations and a survey of relevant literature, include
short articles on the essential aspects of random signal theory,
and on the implications of the state vector description of
dynamic systems. There is a fully worked-out example of a
linear optimum control system for the aircraft landing
problem, and notes on computer methods of numerical
integration of differential equations and on the approxima-
tion of the Hamiltonian function. Not least is a set of
problems based on the content of each chapter.

Based on a post-graduate lecture course, and especially
suitable as an advance text, the book will also prove valuable
to the practising engineer and mathematician who must turn
optimal theory into working control schemes. Such appli-
cations will provide employment for man and computer for a
good many years—indeed as long as there are processes to
control, and computers with which to do so.

P. A. N. BRIGGS
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