
Multipoint iterative methods for solving certain equations

By P. Jarratt*

A class of methods for solving equations is described which is very efficient in cases where the
derivative can be rapidly evaluated compared with the function. Third- and fourth-order methods
are analyzed and it is shown that a fifth-order method exists which requires only one function and
three derivative evaluations per iteration.

1. Introduction
Multipoint iterative techniques for finding zeros of a
function,/(x), have been studied by Householder (1953),
Ostrowski (1956) and Traub (1964). Briefly, these
methods calculate new approximations to a zero of/(x)
by sampling, at each iteration, / and possibly its deriva-
tives for a number of values of the independent variable.
An additional feature of these processes is that they may
possess a number of free parameters which can be used
to ensure, for example, that the convergence is of a
certain order for simple zeros, and that the sampling of
the function and its derivatives is done at felicitous
points. It is worth noting that the second condition
is also a distinguishing characteristic of Gaussian quad-
rature formulae and of Runge-Kutta methods for
integrating ordinary differential equations. How-
ever, although of considerable theoretical interest,
multipoint iterative methods have not attracted any
great practical attention, being usually rather inefficient
computationally compared with more standard tech-
niques. Nevertheless, for a commonly occurring class
of functions for which the evaluation of the derivative
/ ' is cheap compared with / , certain of these methods are
undoubtedly attractive. In particular, Traub (Traub,
1964,—Chapter 9) has described third- and fourth-order
formulae which require only one function and two or
three derivative evaluations respectively per iteration.
Thus for functions which are defined, for example, by
integrals, a high-order root-finder is available which
costs virtually no more per iteration than Newton's
method or the regula falsi. In this paper, a class of
multipoint methods is examined which yields a number
of interesting third- and fourth-order processes, appli-
cable to the same type of problem. It is further shown
that a very economical fifth-order method can be con-
structed which costs only one function and three
derivative evaluations per iteration.

2. Third-order formulae
In order to obtain solutions of/(x) = 0 (2.1)

we consider first a family of iterative methods defined by
the formula

x

*"+' ~ X" «,««»,(*„) + a2u>2(xn)
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where a> ,(*,,) =/'(*„)> « 2 W = /'[*„ + «"(*,)]
and u=flf.

For non-zero values of the parameters au a2 and a, each
application of (2.2) will require one evaluation of/and
two of/'.

We now study the properties of the iteration (2.2) by
assuming a simple root of (2.1) at x = 6 and defining
the error en in the nth approximation by xn = en + 6.

Using the Taylor expansions ofj{xn) and/'(*„) about
00

the root x — 6 we have/(xn) — 2 cre'n and

- ' where cr = /W(0)//-!

and c0 =/(/?) = 0.

From these results we find that

"(*„) =/(*«)//'(*„) = e» - j * \ + O[4)
and hence

oJ2(,xn) =f'[xn + <xu(xn)] = c, + 2c2(l + a)en

Thus
alwl(xn) + a2u>2(xn)=pi +p2en + p3e

2
n + O[e3

n]

where px = c , ^ + a2), p2 = 2c2[a, + (1 + <x)a2]

and />3 = 3c3aj + a2 3c3(l + a)2 - Ija 1 (2.3)

Substituting now in (2.2) and expanding, we derive
ultimately the relation

We can now use the free parameters a, and a2 to ensure
that the iteration (2.2) will be third-order for simple
zeros of arbitrary functions /. For this we require
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We have

and using (2.3), these reduce to a, + a2 = 1
2aa2 = — 1,

the solution in terms of the remaining free parameter a
being

l + 2 a - 1
a, = 2a a-, =. "2 2a

Furthermore, the asymptotic error constant, i.e. the
coefficient of e3 in (2.4) now becomes

3
(2.6)

A family of third-order formulae can be obtained by
assigning specific values to a. In deciding these values,
we note from (2.2) that/' is sampled at xn and xn + <xu(xn).
Hence by choosing a negative we shall ensure that in
most cases of interest xn + a.u(xn) will be nearer than
xn to 6. If a = — 1, then, of course, xn + <xu(xn) is
the point which would be predicted by Newton's formula.
With these considerations in mind, two values of a are
of special interest. First, if a = — $, then from (2.5),
ax = 0 and (2.2) is simplified to

-„+.--„ f'[xn-iu(xn)]>

the asymptotic error constant having the value -\ — —-.

Secondly, from (2.6), if a = — 2/3 then the asymp-
c2

totic error constant becomes —2 and with a{ = 1/4,
a2 = 3/4, (2.2) is c '

/(*„)
xn+ 1 — xn ~~

This type of formula has particular merits in cases where
/ satisfies a simple second-order differential equation,
when the form of the asymptotic error constant can be
used to speed convergence.

3. Fourth-order formulae and a fifth-order process
In deriving fourth-order formulae, we increase the

number of disposable parameters by using an iteration
of the form

/ ( * „ ) n n
x x l J

where tu, and OJ2 are as defined in (2.2) and

Each application of (3.1) will normally require one
function and three derivative evaluations per iteration.
The analysis of (3.1) now proceeds in a similar fashion
to that of the third-order case.

u(xn) = en -
 C-f ,1 + 2 ( | - -̂3) el + O[4] (3.2)

and hence

e
3 + O[4] (. 3)

where qx = 2c2(l + a), q2 = 3c3(l + a)2 - 2 - a

and q3 = 4c2f-§ la — 6 a(l + a)
C' C' C' + 4c4(l + a)3.

We now find

r = en + r,e2 + r2e
3 + O[e ]̂ (3.4)

where r, = ^(1 + 2a)

and r2 == 2 ^ ( 2 a 2 + 4 a + 1 ) - — ( 3 a 2 + 6 a + 2)
I 1

and substituting (3.2) and (3.4) into co3(;cn) we obtain

y),where sx = 2c2(l

and

e3 + O[e«] (3.5)

3c3(l + p + y)2

6c3(l

4c4(l y)3.

Finally, by substituting (3.3) and (3.5) into (3.1) and
expanding we find, after some lengthy algebra, that the
conditions for (3.1) to be fourth-order are

at +a2+ a3= I
aa2 + (j8 + y)a3 = —

a2a2 + (j8 + y)2a3 = 4
ccya3 = £.

(3.6)

Furthermore, using the relations of (3.6), the asymp-
totic error constant turns out to be of the form

+2a(/3+y)] • (3-7)
(3.6) represents a set of four equations in six unknowns
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and hence we may solve for any four of the variables in
terms of the remaining two. However, the value of a
decides where a>2(xn) is sampled, and from (3.5) we see
that io3(xn) is sampled at a point determined effectively
by the value of 0 + y. We therefore write 6 = 0 + y
and solve (3.6) for au a2, 0 and y in terms of 0 and a.

2
For a ? t - r , 0 # O , 0=5̂= a, the solution is

,

a , =

0=0-

6a0

36(6. - a)
2a(3a+2)

and y =

30+2
6a(a-0)' a

30(0 - a)
2a(3a+2)"

3 a + 2

The last equation of (3.6) shows that we cannot have
a, y or a3 zero. We dispose of the solutions which are
special cases first. 0 = 0 is immediately excluded from
consideration on sampling grounds. Also a = — §
implies 0 = a, and we can now find a one-parameter
family of solutions of the form

1 3
4

giving one solution of interest.
Assuming henceforth that a ^ 0, we go on to seek

solutions which simplify the form of (3.7), the asymp-
totic error constant. Now the second and third terms
of (3.7) will vanish for values of a and 0 satisfying the
simultaneous equations

a + 20 = - 2

4(a + 0) + 6a0 = - 3,

which have solutions a = — •=, 0 = — -. and a = — 1,
3 o

0 = — \. We see that the second solution is of parti-
cular interest since a = — 1 also renders the first term
of (3.7) zero, and we obtain a formula which is fifth-
order. The corresponding values of the parameters are

<*i =6> a2 = g, a3 = p P= - g and y = - - . The

asymptotic error constant of this fifth-order process has

not been estimated. The solution a = — •=, 0 = — -
3 o

resuils in a fourth-order process whose asymptotic error
constant depends only on c2 and cx, the values of the

1 1 2 1
parameters being a, = —, a2 = ^, «3 = 5. « = — 3,

2 5 ,
24 a n d = — J T . Such processes are valuable

since, as Traub (Ch. 11) has shown, they may be readily
generalized to deal with the problem of solving systems
of equations. Other fourth-order formulae having useful
properties can also be constructed, for example, with
ax = 0 or a2 = 0, but the details wilKbe omitted here.

4. Multiple roots

In the case where the root 0 of (2.1) is multiple, the
convergence of the iterative formulae derived from (2.2)
and (3.1) in general falls to first-order. Thus for the
iteration (2.2) we find, by setting c{ = 0 and expanding,
that for a double root, the errors are related by

1
en+1 = 1 - T : TTT" en + O[e$],

and using (2.5) this reduces to en+1 = -zen + O[ej|].

This means that asymptotically only one extra signi-
ficant figure approximately is gained every three itera-
tions. In practice one method of dealing with multiple
roots is to compute at each iteration the quantity

Rn =
xn — xn - 1

xn-l ~ Xn-2

Using xn — en + 9, we have

*.=
*n — en-l

£„_, — €n_2

and assuming, for multiple roots, that en+1 ~ Ken

Where K is a constant, it follows that Rn ~ \K\. Thus,
if during a calculation Rn has remained approximately
constant over a number of iterations, then it is safe to
assume geometric convergence and apply an accelerating
device, for example Aitken's S2 process. Another possi-
bility is to carry out the calculation replacing / by / / / '
which has only simple zeros, but this technique is rather
wasteful since in practice the roots of interest are usually
strongly isolated.

5. Conclusions
The formulae derived in Sections 3 and 4 will provide

very efficient methods for locating simple zeros of func-
tions whose derivatives can be rapidly computed com-
pared with the function itself. A limited amount of
numerical experience has indicated that a reasonably
close starting value x0 is necessary for the methods to
converge; this condition, however, applies to practically
all iterative methods for solving equations.
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