Multipoint iterative methods for solving certain equations

By P. Jarratt*

A class of methods for solving equations is described which is very efficient in cases where the

derivative can be rapidly evaluated compared with the function.

Third- and fourth-order methods

are analyzed and it is shown that a fifth-order method exists which requires only one function and
three derivative evaluations per iteration.

1. Introduction

Multipoint iterative techniques for finding zeros of a
function, f(x), have been studied by Householder (1953),
Ostrowski (1956) and Traub (1964). Briefly, these
methods calculate new approximations to a zero of f(x)
by sampling, at each iteration, f and possibly its deriva-
tives for a number of values of the independent variable.
An additional feature of these processes is that they may
possess a number of free parameters which can be used
to ensure, for example, that the convergence is of a
certain order for simple zeros, and that the sampling of
the function and its derivatives is done at felicitous
points. It is worth noting that the second condition
is also a distinguishing characteristic of Gaussian quad-
rature formulae and of Runge-Kutta methods for
integrating ordinary differential equations. How-
ever, although of considerable theoretical interest,
multipoint iterative methods have not attracted any
great practical attention, being usually rather inefficient
computationally compared with more standard tech-
niques. Nevertheless, for a commonly occurring class
of functions for which the evaluation of the derivative
[’ is cheap compared with f, certain of these methods are
undoubtedly attractive. In particular, Traub (Traub,
1964,—Chapter 9) has described third- and fourth-order
formulae which require only one function and two or
three derivative evaluations respectively per iteration.
Thus for functions which are defined, for example, by
integrals, a high-order root-finder is available which
costs virtually no more per iteration than Newton’s
method or the regula falsi. 1In this paper, a class of
multipoint methods is examined which yields a number
of interesting third- and fourth-order processes, appli-
cable to the same type of problem. It is further shown
that a very economical fifth-order method can be con-
structed which costs only one function and three
derivative evaluations per iteration.

2. Third-order formulae

In order to obtain solutions of f{x) =0 2.1)
we consider first a family of iterative methods defined by
the formula

J(x4)

a,w(x,) + aywy(x,)

* Bradford Institute of Technology, Bradford, Yorks.

2.2)

Xp+1 = Xp —
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where w,(x,) = f(x,), wi(x,) = ['[x, + ou(x,)]
and u = ff”.

For non-zero values of the parameters a,, a, and «, each
application of (2.2) will require one evaluation of f and
two of f*.

We now study the properties of the iteration (2.2) by
assuming a simple root of (2.1) at x = 8 and defining
the error ¢, in the nth approximation by x, = ¢, + 6.

Using the Taylor expansions of f{x,) and f'(x,) about

the root x = 8 we have f{x,) = 3, ¢, and
r=1
S'(xn) = Z re,e; ™t where ¢, = fO(6)/r!
r=1
and ¢, = f(6) = 0.
From these results we find that
c
uGen) = fc)lf () = € — e} + Ole]]
and hence
w2(xn) =f,[xn + o‘u('xn)] =c + 202(1 + O‘)En
2
+ [3C3(1 + a)? — 25—2 oc] e + O[€l].
1
Thus
ayw(x,) + aywy(x,) = pi + pre, + pset + O[el]
where p, = cy(a, + ay), p2 = 2¢;3[a; + (1 + a)a,)

and p; = 3ciay + a, [303(1 + a)? — 2?0:]. .3)
1

Substituting now in (2.2) and expanding, we derive
ultimately the relation

4! 1/.p
€nt1 = (1 “‘E €n +171 b“fcl —‘Cz)fﬁ
1 2
+1—’I “D‘TCZ“F i_?_g-i)cl“CJ]53+o[€:]
1
2.9

We can now use the free parameters @, and a, to ensure
that the iteration (2.2) will be third-order for simple
zeros of arbitrary functions /. For this we require

¢
l——=0
P
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P>
¢, —¢cy;=0
2, C! 2

and using (2.3), these reduce to a;, + a, =1
2&02 = — l,

the solution in terms of the remaining free parameter o«
being

14 2« —1
al =T,02=E- (2.5)
Furthermore, the asymptotic error constant, i.e. the
coefficient of €2 in (2.4) now becomes

3 3
s~ (14 39).

cf

A family of third-order formulae can be obtained by
assigning specific values to «. In deciding these values,
we note from (2.2) that f” is sampled at x, and x, + au(x,).
Hence by choosing « negative we shall ensure that in
most cases of interest x, + au(x,) will be nearer than
x, to 8. If « = — 1, then, of course, x, -+ au(x,) is
the point which would be predicted by Newton’s formula.
With these considerations in mind, two values of « are
of special interest. First, if « = — 4, then from (2.5),
a; = 0 and (2.2) is simplified to

)
fl[xn - %u(xn)]’

(2.6)

Xpr1 = Xn

C3
4cy
Secondly, from (2.6), if « = — 2/3 then the asymp-

2
totic error constant becomes % and with a, = 1/4,
a, = 3/4, (2.2) is ¢

S(x,)

a4 + 3 x — 2u(x,)])

This type of formula has particular merits in cases where
f satisfies a simple second-order differential equation,
when the form of the asymptotic error constant can be
used to speed convergence.

: . 3
the asymptotic error constant having the valuez—i —
1

Xn+1 = Xp

3. Fourth-order formulae and a fifth-order process

In deriving fourth-order formulae, we increase the
number of disposable parameters by using an iteration
of the form

S(xz)

ayw(x,) + a,wy(x,) + azws(x

Xnp1 = Xp —

5 @a3.1)

where w, and w, are as defined in (2.2) and

S (x,.)]
wZ(xn) ’

Each application of (3.1) will normally require one
function and three derivative evaluations per iteration.

The analysis of (3.1) now proceeds in a similar fashion
to that of the third-order case.

wy(x) = f [x" + Bu(x) +
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We have 2
N €2 G\ ; 4
u(x,,) = €, 3 €n + 2(0% cl)E,, + O[En] (32)
and hence

wZ(xn) =f’[xﬂ + au(xll)]

=¢ + g1, + 262 + g3 + O[e5] (. 3)

e
where g, = 2¢,(1 + @), ¢, = 3c5(1 + o) — 26—2a
1

2
and q; = 4c2(£§ — 2)oc — 6c2_c3a(l + a)
(S ¢y
'+‘ 4C4(1 + oc)3.
We now find
u{f();::) = €, + rye + ryes + Of€l] 3.4)
where r; = — 2—2(1 4 2a)
1

2
and  ry=— 2%(2052 4 4o+ 1)— ?(3::2 + 6a 4+ 2)
1 1

and substituting (3.2) and (3.4) into ws(x,) we obtain

o) = 1 Bt + y Lo |

= ¢, + 5y€, + 5,62 + 5365 + Olel] 3.5

where s, =2c)(1 + B+ ),
c
8y = 2c2(yr, - C_TB) + 3C3(l + B + 7)2
2
and s3=262[}”z +2B(c_§ _c_: ]

+ 6c5(1 + 8 + ')’)('}"'1 — 2:3)

+ dei(1 + B+ ¥)°.

Finally, by substituting (3.3) and (3.5) into (3.1) and
expanding we find, after some lengthy algebra, that the
conditions for (3.1) to be fourth-order are

a +a+a;=1

agy + (B + y)az; = — %
ala, + (B + y)a; =1
ayas = .

(3.6)

Furthermore, using the relations of (3.6), the asymp-
totic error constant turns out to be of the form

(214

21+ 3+ 28 + )]

3
250+ @ =3

c 4
+ 215 a BN+ 2049 61

(3.6) represents a set of four equations in six unknowns
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and hence we may solve for any four of the variables in
terms of the remaining two. However, the value of «
decides where w,(x,) is sampled, and from (3.5) we see
that ws(x,) is sampled at a point determined effectively
by the value of 8 4 y. We therefore write § = 8 + y
and solve (3.6) for ay, a,, B and y in terms of # and «.

2
For o # — 3 8 # 0, 6 # «, the solution is
_6a0+3(a—|—9)+2 30 +-2

fh= 6a0 ’ 02:6a(a—0)’ i

36(0 — «) 3000 — )
B=0—5.Gax2 ™ Y=5.G. 72

The last equation of (3.6) shows that we cannot have
a, v or a; zero. We dispose of the solutions which are
special cases first. 8 = 0 is immediately excluded from
consideration on sampling grounds. Also « = — %
implies § = «, and we can now find a one-parameter
family of solutions of the form

1 3 3 3

3o+ 2

T 6600 — )

0—o)

alzz,‘h:a‘*‘g‘;’aas:_@a
2 2 1
o:=—§and,3:—§—'y,y=—2—

giving one solution of interest.

Assuming henceforth that « % 0, we go on to seek
solutions which simplify the form of (3.7), the asymp-
totic error constant. Now the second and third terms
of (3.7) will vanish for values of « and 8 satisfying the
simultaneous equations

oa420=—2
4o + 8) + 600 = — 3,
5

. 1
which have solutions « = -3 = — 6 and o« = — 1,
0 = — 1. We see that the second solution is of parti-
cular interest since &« = — 1 also renders the first term

of (3.7) zero, and we obtain a formula which is fifth-
order. The corresponding values of the parameters are

1 1 2 1 3
ap =g, 2 =% 43 = 73> B=—§ and Y="% The

asymptotic error constant of this fifth-order process has

1 S
not been estimated. The solution o = -3 0= — 3

resuiis iri 2 fourth-order process whose asymptotic error
constant depends only on ¢, and c,, the values of the
2 1

|
parameters being a; = 100 2= a=—3z,
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B = % and y = — —. Such processes are valuable

8

since, as Traub (Ch. 11) has shown, they may be readily
generalized to deal with the problem of solving systems
of equations. Other fourth-order formulae having useful
properties can also be constructed, for example, with
a; = 0 or a, = 0, but the details will.be omitted here.

4. Multiple roots

In the case where the root & of (2.1) is multiple, the
convergence of the iterative formulae derived from (2.2)
and (3.1) in general falls to first-order. Thus for the
iteration (2.2) we find, by setting ¢, = 0 and expanding,
that for a double root, the errors are related by

1
€1 = |1 — €, + O[€l],
* [ 2[0, +az(l + g)]} -

1
and using (2.5) this reduces to €,,; = 3€n + Ol[€2).

This means that asymptotically only one extra signi-
ficant figure approximately is gained every three itera-
tions. In practice one method of dealing with multiple
roots is to compute at each iteration the quantity

Xp — Xp—1
R, = |2 Znzl

Xp—1 — Xp-2
Using x,, = ¢, - 0, we have

€, — €p—1

R, =

€p—1 — €n—2
and assuming, for multiple roots, that e,,, ~ Ke,
where K is a constant, it follows that R, ~ |K|. Thus,
if during a calculation R, has remained approximately
constant over a number of iterations, then it is safe to
assume geometric convergence and apply an accelerating
device, for example Aitken’s 82 process. Another possi-
bility is to carry out the calculation replacing f by f/f’
which has only simple zeros, but this technique is rather
wasteful since in practice the roots of interest are usually
strongly isolated.

5. Conclusions

The formulae derived in Sections 3 and 4 will provide
very efficient methods for locating simple zeros of func-
tions whose derivatives can be rapidly computed com-
pared with the function itself. A limited amount of
numerical experience has indicated that a reasonably
close starting value x, is necessary for the methods to
converge; this condition, however, applies to practically
all iterative methods for solving equations.
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