One man’s meat:
Part I—The uses of adversity

By F. 1. Musk *

This is the first of a series of papers which attempt to define one computer user’s philosophy
This philosophy will be valid only if the user can prove he has striven to adhere to it. The
necessary proof will be furnished by his existing software. Each software description will be a

paper in its own right.

They would sit at breakfast in Forte’s, watching the sun
rise above the M1 on a summer’s morning. They were
teams of two, part of a shuttle service between Coventry
and London. We sent them off in pairs every four hours.
They came back in groups like buses, boisterous groups
of six and eight. If we lost any, they turned up again
later. The party seemed to be going on for ever, for
our computer was aching in every dry joint. OQOur
computer policy then was to avoid coming to blows with
our customers. This is what I mean when I say that
any attempt by an industrial user to adhere to a fixed
computer policy is likely to fail.

We had some interesting programs on. We were
running a planning and scheduling scheme linked to
stock control, invoicing and sales ledger. We had
written a linear-programming routine, and could design
distillation columns and heat exchangers. We had built
up a colour matching catalogue for standard shades.
We did multi-factor analysis. We wrote our own sort
rontines. We had a forward looking policy, we felt—
and then this. We all but succumbed.

From our defensive posture, we crept out and
embraced the precept of reliability. We would in
future avoid discs, drums and other mechanical devices,
which had given us such rich experience of involved
breakdown and inscrutable error. Our software would
be venturous in effect, but modest in structure, There
would be no sophisticates in our team, for good ideas
were simple ideas.

This was our new policy, and it served us well. Now
that we are leaving our third machine, and again stepping
into the unknown (perhaps the abyss), we ought to see
if there is some immutable principle which served us in
the past, and which we can take into the future. If there
is, it cannot be a policy. Our past is strewn with broken
policies. We would not like to think it was brute urge
for survival, although at times we have been very close
to that. Perhaps it is a philosophy. If it is, it should
be reflected in the software we have developed. These
articles will be an attempt to define such a philosophy,
tenuous then, becoming clearer now, and illustrated by
our software.

As each piece of software is introduced, it will be

* Computer Dept., Courtaulds Ltd., Matiock Road, Coventry.

accompanied by a detailed description of its function and
its anatomy by its author. Our philosophy will not be
applicable, may not even be of interest, to many com-
puter users. Neither may our software be applicable,
but it will be of interest. Let us start by assuming that
what follows is (and was) the first tenet of our philosophy.

“To an industrial concern, the initial function of
computing is to provide management at all levels with
all relevant but no other data, in the most easily
assimilated form, at the precise moment when a policy
decision has to be taken.”

This should not be mistaken as the only such tenet, and
not even perhaps the most important. It must, how-
ever, be the first because some movement towards its
implementation is a necessary prior condition for
further development.

Developing a data base

A number of years ago, a colleaguet and I were asked
to look at possibilities for operational research in a new
factory. Qur investigations showed not only that
insufficient background data were available for analysis
but that the existing record system would rarely produce
the clues necessary to develop relationships of relevance
to a systematic study. Where appropriate records did
exist, the data became buried in complex special purpose
end forms and summary statements. Since a punched-
card installation was available, one of our minor sug-
gestions was that data might be held on cards in an
uncombined way, each basic variable having its own
field. This pack of cards would constitute a Data Bank,
as we then called it, from which information could be
culled to provide not only routine but also ad hoc
tabulations. This would have made future operational
research (or any other) investigations easy. We were
ignorant at that time of the crudity of data processing
by “conventional” equipments, and wiser counsels (or
apathy) prevailed.

Now, however, with the emergence of data processing
on the computer scale, such a proposition would have

t The late Dr. E. D. Totman.

¥202 Iudy 61 uo 1senb Aq GZ08YE/L/L/6/2101e/|ulwoo/woo dno-ojwsepeoe//:sdiy wolj papeojumoq



Uses of adversity

something to commend it, and perhaps it is fortunate
that so many organizations in this country start com-
puting for this purpose. Even organizations which have
a long tradition in industrial statistics or operational
research tend to introduce computers on the simple
basis that by so doing they will reduce clerical cost.

Reports by working parties may contain closely
reasoned arguments on the supply of accurate and up-
to-date information for management control. They
may dwell upon the possibilities of reducing process
costs by the use of optimum methods in planning and
scheduling. They may suggest that routine operating
data, now used only for day-to-day running, can be
saved and sifted for large-scale analysis, and that this
may complement research effort in other directions.
They may plead the usefulness of computer models, most
particularly to demonstrate the feasibility of on-line
working. It is, however, most difficult to produce a
concrete example within the organization, and in the
absence of a computer, which will prove the cost
effectiveness of such applications adequately to justify
on that basis the installation of a computer. No argu-
ment is so telling as a costing.

On the other hand, it is possible to set down side by
side for comparison the costs (or close estimates) of
existing clerical methods against the cost of a computer
method. This being the case, all initial efforts must be
directed to transforming the clerical method to a com-
puter method. If no insuperable problems appear in
programming, if the computer can be induced to take
its load in the computer time available, if deadlines can
be met and the equipment is reliable, and if the costings
were close enough, then success is assured.

At this stage, an ideal loading would consist of
customers’ orders, despatches, sales invoices, sales
ledger, cash reconciliation, sales statistics, on the one
hand, and requisitions, purchase orders, receipt of goods,
allocation of invoices, purchase ledger, payment of
accounts, and stores issues on the other. If, then, pay-
rolls for wages and salaries are added, with bonus
calculations where these apply, the system implicitly
includes job and materials costing, and a push can be
made towards a complete costing system.

A likely computer loading at this stage would not
include all of this, but it would include sufficient elements
of this data base to plan movement forward to the next
stage.

Exploiting the data base

Let us suppose we are equipped with a no doubt
efficient, marginally profitable, utterly pedestrian accoun-
tancy system on our computer; how can we best aspire
to the first tenet of our philosophy? This requires the
development of more than simply the routine tabulations
which are usually found in such a system. These routine
tabulations occur periodically, sometimes cumulative,
sometimes as comparisons with the previous period, or
with the same perjod last year. They tend to occur in
multiple copies, the original reasons for which are

historic. It was easier in the old punched-card
machinery days, or clerical days, to provide many
copies of a complex document, each recipient being
interested in only one fragment, not entirely happy with
his return, but knowing that only by mountainous labour
could the return be changed to the slightest degree. The
aim is to provide to anyone on request (or within 24
hours) a specific return tailored to the enquirer’s precise
need. If this can be done, the mountainous piles of
output may be avoided. Ideally, there would be no
routine reports at all. There would be many small one-
copy random returns. Since we are never to be caught
by surprise, we cannot resort to ordinary programming
methods. Even (for this is commercial stuff) COBOL
will be insufficient for this purpose.

We must design a program which will perform the
following tasks:

1. Extract and store a function of the contents of a
field according to given criteria.

These criteria can be one or more attributes of
the contents, or an attribute of a neighbouring field
or fields in the same item or record, or combinations
of these.

2. Arithmetically combine a function of a field with
a function of a field, where both fields are in the
same file.

3. Arithmetically combine a function of a field in one

file with a function of a field in another file.

. Sort resultant ficlds according to a given hierarchy.

. By table look-up, translate coded information into

clear,

6. Produce a report according to a given hierarchy,
with headings and totals where required.

wv A

Much of this is, of course, already provided by
manufacturers’ routines. All manufacturers provide (do
they not?) sort routines, routines providing input and
output between central processor and files, report
program generators, tabulator simulators and the like.
But a comprehensive program-generating-program is
indicated which will extract, combine and capture all
data which has passed or is passing through the com-
puter. If a piece of data is used, even in a combined or
implicit form, for one computer routine, it should by
such a program be capable of extraction in the form
required. The existence of such a program would be
an indication that we sincerely hold to the first tenet of
our philosophy. Such a program we do have. Rather
shamefacedly I have to admit that we are guilty of yet
another acronymic in calling this CRESTS, or Cour-
taulds Rapid Extract, Sort and Tabulate System. A
crude and experimental version of CRESTS was written
for the Honeywell 400 machine. With the decision to
rewrite for the H2200 (a member of one of Mr.
d’Agapayeff’s Happy Families) came the loan of some
Honeywell programmers to help us in our task. The
CRESTS job was given to Tim Craig as the next
programmer in line, with what interesting results can be
judged from the following paper.

¥202 Iudy 61 uo 1senb Aq GZ08YE/L/L/6/2101e/|ulwoo/woo dno-ojwsepeoe//:sdiy wolj papeojumoq



