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Lanczos T-methods are used to solve the ordinary differential equations with two-point boundary
conditions which result from a finite-difference approximation to a Stefan problem. This
technique, combined with the use of canonical polynomials, provides the basis of a computer
program to solve the Stefan problem which, under certain conditions, is more efficient than the
Douglas-Gallie method. Numerical results from the program are given.

1. Introduction

Mathematical models of physical processes such as the
melting of ice and the recrystallization of metal which
give rise to parabolic differential equations with moving
boundaries are usually referred to as Stefan problems.
Douglas (1961) describes a particular Stefan problem,
defined by the equations

u, = uxx,

ux(0, t) = - 1,

u(x(t), t) = O,x

dx(t)
dt "

x(0) = 0.

0 < x < x(t), t > 0,

, t >0,

= x(0, t > 0,

x{x(t), t), t > 0,

(1.1)

(1.2)

(1.3)

(1.4)

(1.5)

Douglas and Gallie (1955) have discussed in detail a
finite-difference technique for obtaining a numerical
solution to this problem. This technique, with a slight
modification to eliminate the need for iteration is also
described by Douglas (1961). Equal intervals Ax are
taken in the x-direction and variable intervals Atk in
the r-direction. The boundary conditions (1.4) and (1.5)
are replaced by an integrated form, the finite difference
approximation of which is

tn+1 = xn+l + 2 £/,,nAx,

where
n - l

tn = 2 A/*, Atn = / „ + , - tn, x,- = /Ax,
k 0

and £/,,„ is an estimate of w(x,, tn). If estimates of u are
known at time tn, then estimates of u at time tn+ x are
found by solving the following tridiagonal system of
simultaneous equations,

.' — ., n,
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£/,,„+,-[/„,„+, = - A x ,

The whole process is easily programmed for a digital
computer and provides successively better approxi-
mations to the moving boundary as Ax tends to zero.
A minor disadvantage of the method is the need to
provide storage for data arrays whose size is proportional
to (1/Ax). A more serious disadvantage is that the
amount, and hence the speed, of calculation varies as

If equal intervals A; are taken in the f-direction then
the solution of (1.1) can be reduced to the solution of
second-order ordinary differential equations. This
approach, combined with the use of Clenshaw's method
(Clenshaw, 1957), has been used by Elliott (1961) in the
numerical solution of the heat conduction equation
with linear boundary conditions on fixed boundaries.

It is shown in Section 2 of the present paper that the
device of using the Lanczos r-method (Lanczos, 1957),
which is equivalent to Clenshaw's method (Fox, 1962),
can be modified to deal with the moving boundaries
occurring in the Stefan problem.

The use is extended in Section 3, canonical poly-
nomials being introduced to facilitate variation of the
degree of approximation, and a numerical method of
solving the Stefan problem is obtained requiring an
amount of calculation which varies as (I/A/).

Some programming details are given in Section 4, and
numerical results are discussed in Section 5.

2. Lanczos T-methods in the Stefan problem
Assume now that U0(x), f/i(x) are approximations to

w(x, /0), w(x, /,) and that the points (x0, /0)> (*i> 'i) l i e

on the moving boundary. If x0 and U0(x) a r e known
then finite-difference representations of (1.1), (1.2), (1.3)
and (1.4) yield the following equations for xt and Ut(x),

dx2 At
f/0(x) _

(2.1)
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Parabolic differential equations

(2.3) in (2.5) was chosen in preference to the more usual
x\

V \

-

At

If U0(x) has a power series expansion
n + l

U0(x) = 2 a
m=0

then in order to obtain £/,(*) in the form

n+l

m=0

(2.1) is replaced by the perturbed equation

d2Ui(x) __ Ui(x) U0(x)
dx2 At At

where

and

< 2 4 )

perturbation

in order to minimize the calculation of coefficients.
With these power series representations, (2.4) and (2.2)

give
Af"+'

t = x0 £ man:, b{ = —
•^0 m = l

(2.6)

= (T'+T2|)r"*

Tn*(x) = S C

Xi
C2 51

An — m) \ n — m /J ' '

and (2.1) and (2.3) provide (n + 3) simultaneous equa-
tions for b0, b2, b3,. . ., bn+ u T,, T2, which can be written
as shown in (2.7).

The solution of (2.7) together with (2.6) determines Xi
and Ux{x), which thus enables a step-by-step solution of
the Stefan problem to be obtained.

3. Use of canonical polynomials
The possibility of varying the degree of the polynomial

approximation to U\{x) in order to minimize |T, | + |T2|
leads in a natural manner to the introduction of canonical
polynomials. The differential operator under considera-
tion in the solution of the Stefan problem is

for w = 1,2,. . ., n.
The perturbation

At)'
(3.1)

The canonical polynomials
the differential equations

a r e found by solving

= xm,m = 0, 1 , . . . ,

1
2A/

6At

- 1
\2At

-c°nAt

-c\At -c°nAt

-c2
nAt ~cj,At

1 {n - \)nAt
-c"n~

2At —c"n~
3At

- 1
n(n + I) At

— 1

- 1

-c"nAt -cIT'Af

~c"At

bn

bn+\

r - 2

(2.7)
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to give

where
0, if m < s or if m + s is odd,

r(A0
(3.3)

otherwise.

Making use of the canonical polynomials, the solution
of (2.5) can now be written

1 "£ ' an

. 0.4)

The boundary conditions (2.2) and (2.3) provide two

linear algebraic equations for rt and T2, namely

s ^ e ( ) J + [S ^ e ( * ) ]
a

m = 0

m=0 *j J L"i = 0 Xi J

1 " + ' am .

(3.5)

where

(0, if m is even, 1
! m + l } (3.6)

2 , otherwise. J
The perturbation coefficients T, and T2 having beenfound,
the expression (3.4) for C/,(x) can be rearranged as a
power series of the required form, since if

then b0, bu . . ., bn+, are given by

n+l

*m = *7 2 a ^ . m , W = 0,

4. Program details
In order to keep the perturbations as small as possible

it seems desirable to vary n for each time step and to
choose n such that |T, | + |T2| is a minimum. For this
purpose a prescribed error e is input with the initial
data and at each step the smallest value of n within
fixed limits nmin and n
lTil + IT2| < 6- Note
required for data is dependent on nn

tively small.

max

that

is selected which yields
the amount of storage

and hence rela-

Table 1

Boundary values obtained using the Douglas-Gallie
method

Ax

x = 0-4
x = 0-8
x = l-2
x = l-6
x = 2-0
* = 2-4
x = 2-8
* = 3-2
x = 3-6
x = 4 - 0

Time

0 1

0-4542
10232
1-6837
2-4250
3-2401
4-1242
5-0735
6-0850
7-1564
8-2855

1

0 0 4

0-4621
10350
1-6980
2-4409
3-2570
4-1416
50910
6-1022
7-1730
8-3012

5-5

0 0 2

0-4646
10388
1-7027
2-4462
3-2626
4-1473
5-0967
6-1079
7-1785
8-3064

18-25

0 0 1

0-4659
1-0408
1-7051
2-4488
3-2654
4-1502
5-0996
6-1107
7-1812
8-3090

72

0001

0-4670
10425

285

When b0, bu. . ., bn+l are calculated, they are
examined to see if the series can be truncated without
loss of accuracy. A rough rule for this purpose is that
a coefficient can be discarded if i X |Z»,-| < e/10. The
coefficient of the highest power is, of course, examined
first, and if it is insignificant then the coefficient of the
next highest power is examined. The examination ter-
minates when either the minimum number of coefficients
are left or a coefficient is reached which is significant.
The range of variation of n for the next time step is then
adjusted accordingly.

For the Stefan problem considered here it is possible
to obtain, by analytical techniques, power series expan-
sions for both the function u{x, i) and the boundary x(f)
which are valid for small x and /. Expansions of this
type have been derived by Evans, Isaacson and Mac-
Donald (1950) and the series

1 5 , 51
= '~2V + 3 i ' 41'

827

•TT '

u(x, t) = (t~ - xh)

(29^r5 -

can be obtained directly from their results. These
expressions provide a convenient means of obtaining
starting values for the program.

5. Numerical results
Table 1 shows the time coordinates of the moving

boundary corresponding to x = 0-4(0-4)4-0, for several
values of Ax, working with the Douglas-Gallie dis-
cretization.
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Table 2 Table 3

Boundary values obtained using the method of Section 3 The effect of using different prescribed errors, Af = 0 01

x = 0 - 4
* = 0 - 8
x = l-2
x = 1-6
x = 2-0
x = 2 - 4
x = 2-8
x = 3-2
x = 3-6
x = 4 - 0

Time

0 1

0-4576
10304
1-6940
2-4376
3-2542
4-1391
5-0887
6-1000
7-1705
8-2984

4-5

0 0 4

0-4635
1-0378
1-7021
2-4459
3-2626
4-1475
5-0970
6-1082
7-1786
8-3063

10-5

002

0-4653
10403
1-7048
2-4487
3-2654
4-1503
5-0998
61109
7-1813
8-3089

20-5

001

0-4662
10415
1-7061
2-4500
3-2668
4-1517
51011
6-1122
7-1826
8-3102

44-25

Table 2 shows the corresponding values, after inverse
interpolation, obtained when working with the method
described in Section 3 and the values nmin = 3, nmax = 8,
e = 10-5.

It will be seen that the results from the two methods
are in good agreement, and a comparison of the time
factors shows that for small increments the method of
Section 3 is more efficient than the Douglas-Gallie
method.
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Table 3 shows the effect of varying e with a fixed time
increment A? = 0-01. The small variation of the results
indicates that the choice of e = 10 ~5 for the results in
Table 2 was perhaps too conservative. However,
questions of this nature, together with the possibility of
automatically choosing optimum intervals will be con-
sidered in a further paper.
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