
On the instability of the Crank Nicholson formula
under derivative boundary conditions

By P. Keast and A. R. Mitchell*

Finite-difference solutions are considered for the heat conduction equation in one space dimension
subject to general boundary conditions involving linear combinations of the function and its space
derivative. It is shown that under such conditions, instability can often arise even although
"stable" formulae of the Crank Nicholson type are used. In particular, the persistent error
discussed by Parker and Crank (1964) is shown to be a weak case of this more serious instability.

1. Introduction
In a recent paper, Parker and Crank (1964) discussed
the numerical solution by finite differences of a one
dimensional parabolic partial differential equation for a
variety of boundary conditions. They concluded that
for certain types of boundary condition, errors intro-
duced by the use of finite-difference formulae in the
region of a discontinuity, either in the initial conditions
or between the initial and boundary conditions, could
persist through to the steady-state solution.

It is the purpose of this paper to show that persistent
errors arise whether discontinuities are present in the
initial data or not. Furthermore, the persistent error
discussed by Parker and Crank and first noticed by
Phelps (1962) is only a weak case of a more serious
instability which can arise for certain boundary condi-
tions in the solution of the heat conduction equation by
apparently stable difference formulae.

2. Statement of the problem
Consider the equation of heat conduction

*« *" (1)

in the region R[0 < x < 1] X [t > 0] subject to the
initial condition

H(X,0 )= / (X) 0 <

and the boundary conditions

du

Yx + b°U = A ° ^ X = ° ' t<0

~du
^ + M = A , ( / ) x=l, / > 0 .

(2a)

(2b)

It is assumed that no discontinuity exists in the initial
condition and that

anf'(0) + bof(O) = A0(0)

ai/'O) + *./(!) = A,(0)
* Department of Mathematics, St. Andrews University, Scotland.

where ' denotes differentiation with respect to x, and so
there is no discontinuity between the initial and
boundary conditions. In addition Ao(/), A,(?) are con-
tinuous and bounded as t ->• oo.

3. Finite difference scheme
The region R is covered by a rectangular net, and the

mesh points are 0'Ax, «A/) where 0 < j < N, n > 0 and
NAx = 1. We consider the finite-difference analogue of
(1) to be

_ «» = r[982V?+l + (1 - 9)82V"j] (3)

where if] denotes the solution of the difference equation
(3) at the node (./Ax, nA?), r = Af/(Ax)2, 0 < 9 < 1, and
8 is the usual central-difference operator in the x-direc-
tion. The finite-difference replacement (3) holds at
the internal nodes j = 1, 2, . . . N — 1, but requires
modification at the boundary nodes j = 0, N where the
boundary conditions (2b) apply. In fact on the boundary
the approximation

- «?-.) j=0,N; p =

is used which together with (3) at j = 0, N enables the
boundary conditions to be incorporated into the dif-
ference scheme. In the case of the explicit (9 = 0) and
fully implicit (9= 1) schemes the boundary conditions
are incorporated in a modified manner. Otherwise, the
totality of equations can be expressed in the form

^CyCn+O = £ w ( n ) -)- &00; (4)

where

cuf") = (vp
Q, v\, . . . v"N)T, p = n , n + 1

A = / + r9U, B = / - r(l - 9)U

with U an (N + 1) X (N + 1) matrix given by (5)
/ is the unit matrix of order (Â  + 1), and kM is a vector
of (N + 1) components involving the boundary condi-
tions. In the matrix U, we have rj, = —- (/ = 0, 1).
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U =

- T T ) - 2

2 - 1

-1 2 - 1

—1 2 - 1

(5)

Also, provided that A is non-singular, (4) becomes

w(n + 1) = A - lBoJ(n) _|_ A - 1£(«).

4. Stability
The stability theory of Lax and Richtmyer (1956) for

methods of solution of partial differential equations
applies mainly to problems involving equations with
constant coefficients and periodic boundary conditions.
If these conditions are satisfied one can employ a
Fourier analysis, and in the case of difference equation
(3), the well known stability conditions

0< 9 0 <
1
- 6) (7)

r >0

are obtained. The boundary conditions considered here,
however, are certainly not periodic in general, and a
different stability criterion is necessary.

This is motivated by (6) and takes the form

K, (8)

where || ||.denotes the norm, and K is independent
of the mesh size. Godunov and Ryabenki (1964) have
shown that it is impossible to choose such a constant
K if p(A~lB) > 1, where p, the spectral radius of
A~lB, is given by p = max |/x|, /x an eigenvalue of
A~%B. In fact, even when p(A~lB) = 1, it is often
impossible to find such a constant K, and the above
authors have exhibited a matrix C which has p(C) = 1
and | |C" + I | | unbounded. Accordingly we choose

p( / f - • / ? )> ! (9)

as our condition of (possible) instability. It should be
made clear, however, that this does not imply that

p(A~lB) < 1 (10)

is a condition for stability. Condition (10), if satisfied,
merely guarantees that a single error introduced into
the computation at time / will be damped out with time,
and not that the computed values v(x, t; Ax, Af) at a
given station (x, t) in the field will necessarily converge

to u(jx, i) as Ax, Af tend to zero in some prescribed
manner. This was demonstrated by Parter (1962) with
regard to finite-difference solutions of the first-order
hyperbolic equation

5. The eigenvalues of A ~1B

The eigenvalues /*,-(./= 0, 1, . . . N) of A~XB are given
by

where Ay(/= 0, 1, . . . A0 are the eigenvalues of the
matrix U given by (5). Using (9), instability will arise
when p = max \pj\ > 1, which leads to the following

J
conditions:

(i)

(") V-l <

(«)

(b)

(c)

1 if

- 1

( 0 <

(0 =

(i<

for any/

if

6

»

1

< T)

< 1)

<A j

A;

A;

<

<

0

—

—

1

for

1
rd
2
r

• i) *

any/

or Ay J

= A y < -

1
s rQ—8)

1

rO

Thus for example with the Crank Nicholson formula

(6 = i), instability will arise for Ay < 0 (except Ay= J

for any j = 0, 1, . . . N. It should be noted, of course,
2

that Ay = is the condition for A to be singular, and

has already been excluded. Instability will arise here
also, and this case will have to be considered separately.
It should also be mentioned that in case (ii) (a) (0 < 8 < i)
the conditional stability requirement on r from (7) gives

4
the modified conditions Ay < — ^ (^ — 6) or Ay > 4.

6. The eigenvalues of U
The eigenvalues Ay(y = 0 , 1 , . . . N) of U are obtained

from the equation
\U-Xl\ = 0. (12)

Expanding the determinant by the elements of the first
and last rows, respectively, after a certain amount of
manipulation, the result

/(A) = [ ( A - 2 ) ^
N

!(A-2)

= 0 (13)
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is obtained, where [see e.g. Rutherford (1951)]
[W/21

fsj\i\) — XJ *-y \ — **) V—*•)

nk

and

[JV/2] =

N r

-P., [
N/2

4 cos2
2(N

(14)

A^even
(N ~ l)/2 N odd.

The eigenvalues of U given by (13) are, of course, all
real because U is similar to the symmetric matrix U
where U = D~WD, with

£> =

In order to illustrate that instability can arise even
when using an apparently "stable" formula, we consider
the simplified version of (13) obtained by setting
Vo = 1\ = V> (— °° < V < + 00) viz-

[(A - 2)2 - (4 + ?L]

The (N + 1) roots of (15) are given by

N2)

= 0.

A = 2 ± V 4 +

(15)

(16)

together with the (N — 1) roots of

TN_1(X) = 0. (17)

It follows from (14) that the roots of (17) are given by

•nk
At = 4 cos2

2N' ( * = 1, . . . JV-1)

and so 0 < Afc < 4 irrespective of the value of N.
Therefore one root of (15) viz.

A = 2 - (4 + r,2/N2yi2 (18)

is negative for all finite N and another root of (15) viz.

A = 2 + (4 + 772/A'2)|/2 (19)

is greater than 4 for all finite N. Thus, for example, the
Crank Nicholson formulation (8 = | ) is always unstable
in the sense of (9) for the problem denned by (1) and
(2) when 77,, = 77, = 77.

7. Particular cases of the boundary conditions
Amongst the cases considered by Parker and Crank

are the following:

CASE

(1)
(2)
(3)
(4)

«o

0
0
1
1

bo

1
1
0
0

a\

0
1
1
1

bi

1
-k
-k

0

Vo

co
oo
0
0

Vi

co
-2k
-2k (k ^ 0)

0

where as before •>?, = —'- (i = 0, 1), and case (2) is in
ai

three sections (2a) k = 0, (2b) k = 1, (2c) k = all other
values. Substitution of these values of r),(i = 0, 1) into
(13) leads to

(1)

(2) | (A - 2) +

(3)

2k~\

- J 7*_ ,(A) + 27W_2(A) = 0

f- IV

4k

in the various cases. To facilitate examination of the
above, we write

„ ,,, sin (#+!)<£
x N\'XJ — • 1 )

v ' sm<f>

where cos <f> = 1 — iA, and so, for example,

7^,(0) = (Ar+ 1).

(20)

(21)

It is easily seen, using (21) that A = 0 cannot be a root
for any JV in cases (1), (2a), (2c), is a root only if k = 0
in case (3), and is a root for all iV in cases (2b) and (4).
This is more or less in agreement with the findings of
Parker and Crank, with the important difference that
the weak instability (A = 0, p(A~iB) = 1) in cases (2b)
and (4) is not caused by discontinuities in the initial
data or between the initial and boundary conditions. It
should be pointed out that for i < 8 < 1, weak in-
stability (A = 0) occurs if and only if r)0, 77, satisfy the
relation 77077, + 2T7O — 2-ql = 0. The cases considered
by Parker and Crank are mostly special cases of this.
Weak instability, or persistent error as it is called by
Parker and Crank, can also occur for 0 < 6 < 1 when
A = 4. From (20) it follows that:

TN(4) = (-ir(N + I),
and so the solution A = 4 can occur for all N in cases
(4), and (2c) with k = — 1.

More serious, however, is strong instability
(p(A~lB) > 1) which is present if A < 0 or A > 4.
This occurs in case (3), where A < 0 if k > 0 and A > 4
if k < 0. When k = 0, of course, case (3) reduces to
case (4), where A = 0, 4, and only weak instability occurs.
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Table 1

p

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200

0)

E

0-001,127
- 0 000,828
- 0 002,514
- 0 003,616
-0-004,299
-0004,718
- 0 004,974
-0-005,130
- 0 - 005,225
-0-005,284
- 0 005,319
-0005,341
-0-005,354
- 0 005,362
- 0 005,367
- 0 005,370
- 0 005,372
- 0 005,373
-0-005,374
- 0 005,374

P

10
20
30
40
50
60
70
80
90
100
110
120
130
140
160
180
200
220
240
260

(2)

E

0001,087
-0001,043
- 0 002,949
- 0 004,270
- 0 005,166
-0-005,793
- 0 006,257
-0-006,622
- 0 006,930
- 0 007,206
- 0 007,464
- 0 007,714
- 0 007,962
- 0 008,212
- 0 008,725
- 0 009,264
- 0 009,833
- 0 010,436
- 0 011,077
- 0 011,756

p

10
20
30
40
50
60
70
80
90
100
110
120
130
140
160
180
200
220
240
260

(3)

E

0001,105
-0-000,949
- 0 002,768
-0-004,007
- 0 004,827
- 0 005,380
-0-005,770
- 0 - 006,060
-0-006,289
-0-006,483
-0-006,657
-0-006,818
- 0 - 006,973
- 0 007,126
-0-007,432
-0-007,745
-0-008,068
- 0 008,405
-0-008,755
-0-009,120

P

2
4
6
8
10
12
14
16
17
18
19
20
21
22
23
24
25
26
27
28

(4)

E

- 0 000,856
-0-001,582
-0-002,077
- 0 002,310
-0-002,312
- 0 002,057
- 0 001,375
+ 0 000,234
- 0 005,884
+ 0 004,087
—0011,491
+0013,536
-0-025,945
+ 0 037,075
- 0 062,761
+0-096,159
-0-156,047
+0-244,965
-0-391,893
+0-620,271

Finally we return to the general boundary conditions
where 170 and -q t are finite and not equal to zero. This
case was not considered by Parker and Crank and we
have already seen from (18) and (19), when TJ0 = TJ, = 77,
that strong instability arises here. It should be noted,
however, that when rj0 < 0, -qx > 0, we cannot have
A < 0, and so the Crank Nicholson method is uncon-
ditionally stable.

Numerical experiments are now carried out to illus-
trate the magnitude of the error growth in some cases
where weak and strong instability arises.

8. Numerical results

The problem used to illustrate the theoretical
findings of the present paper consists of the heat
conduction equation (1) together with the initial
condition u{x, 0) = sin TTX, and the boundary conditions

The following numerical calculations were carried out
using either the Crank Nicholson formula (0 = | ) or
the "stable" four-point explicit scheme (9 = 0, r < | )

(1)
(2)
(3)
(4)

Vo
0
0

-0-5
0

m
0

-10
-10
400

e
0-5
0-5
0-5
0

r
0-5
0-5
0-5
0-4

N
10
10
10
10

p(A -IB.
1-000
1005
1005
1-668

= ™ r-'

= — ne

x = 0

J C = 1 .

This problem has the theoretical solution

u{x, i) = e ~2' sin TTX V1 •

The errors (E) at x = 0-5 after a number of time steps
(p) are shown for each calculation in Table 1. As
expected, (1) demonstrates a persistent error, and (2),
(3) and (4) demonstrate instability. The degree of
instability increases with the magnitude of p(A~iB).
All results are quoted correct to six places of decimals.

The calculations were carried out on the IBM 1620 of
the University of St. Andrews.

9. Concluding remark

No mention has been made in this paper of instability
of the differential system (1) and (2). This occurs for
certain values of the coefficients a,, bt (1 = 1, 2) (cf.
Batten (1963)) and should be kept in mind when con-
sidering the significance of the instability of finite differ-
ence approximations of such problems.
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Book Review

Computers in Biomedical Research, Vol. 1, edited by Ralph
W. Stacy and Bruce Waxman, 1965; 545 pages. (New
York: Academic Press, 160s.)

According to the editors this book and its companion volume
aim to provide realistic information on the state of computer
application to the life sciences; and to provide guide lines for
those entering the field in the near future. So far as is
possible with such a wide field, this objective is achieved.

Virtually all facets of what can be conceived by the ex-
pression "life sciences" are included: applications in medicine,
biochemistry, psychiatry, molecular biology and psychology.
Some background of digital computer techniques and analogue
computers is also provided.

With such a broad spectrum there must inevitably be a
certain lack of detail. An attempt to counter this is made
by dealing with each subject as a review with the narrative
setting in place a wealth of references.

A typical chapter is the one of diagnosis. This opens with
a historical survey and is then subdivided under the headings
of diagnostic classification, diagnosis techniques, and diag-
nostic teaching. Under the heading "Diagnosis Techniques"
the problems of communication of information concerning
the patient are outlined. This is followed by a discussion
on comparison, scoring and decision-making processes
including multiple discriminant analysis, Bayesian conditional
probability techniques, and principal axis factor analysis.

There are other medically orientated chapters devoted to
the analysis of E.C.G. and E.E.G., biochemical analyses, the
calculation of radiation dosages, multiphasic screening,
medical records, and the evaluation of foetal distress.

In the fields of psychology and psychiatry, little headway

has been achieved with the application of computers. How-
ever, because so much illness comes into these categories it is
justifiable that a substantial portion of the book is devoted
to them.

The first chapter in this section reports the use of com-
puters in designing and running experiments and analyzing
the results obtained. These are relatively straightforward
techniques but nevertheless indicative of steady progress.
Another chapter describes the work carried out at the Univer-
sity of Minnesota on evaluation of personality tests. The
two remaining chapters report first steps of progress in the
simulation of mental processes, but from very different
standpoints: one deals with the development of perceptrons
as neural models and the other with the simulation of
psychiatric dialogue.

The value of the book to medical personnel is enhanced by
the inclusion of a few chapters on general techniques of using
analogue and digital computers, including one on programm-
ing packages.

The remaining sections of the book contain some of the
most stimulating chapters. One is by George Dantzig on
new mathematical techniques applied to the simulation of
multi-compartmental exchange systems as occur in the lungs.
Another, by Charles Coulter, is on the determination of
protein structures from X-ray diffraction patterns.

It is a pity that a little more effort could not have been
applied to sub-editing to avoid the irritating repetition of
stereotyped introductions. However, this is a quibble and
should not detract from the success of marshalling thirty-five
authors, twenty-two chapters and quoting fifteen hundred
references: surely no mean achievement!

M. A. WRIGHT
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