
An experimental program for architectural design 

By W. M. Newman* 

The solution by computer of problems in architectural design is made much more feasible by the 
use of a display and light pen for input and output. In the program described here, the light 
pen is used to create designs made up out of industrialized units, and the computer is then capable 
of performing calculations on the design and displaying the results on the screen. 

This program was written to show how a computer-
driven display could be used as an input/output device 
when designing with modular building units. I t was 
written for the PDP-7 computer at the Cambridge 
University Mathematical Laboratory, which is equipped 
with a Type 340 Display and Light Pen (see Fig. 1). 
The user of the program can add wall units, windows, 
doors, etc., to his design by typing the appropriate 
request on a teleprinter. A picture of the unit then 
appears on the screen wherever the light pen is pointing, 
and can be moved about the screen until it is in its 
correct position. The user can then insert the unit 
permanently in the design, and the program auto
matically aligns the unit with the modular grid. By 
means of the light pen, units can be erased, duplicated 
or moved to new positions. The designs are stored in 
the computer in a form which enables them to be 
compactly recorded on punched tape, and which allows 
the program to perform numerical processing on the 
design, including calculating areas. 

In the first part of this paper the operating techniques 
and general capabilities of the program are outlined, 
and the second part describes some of the programming 
methods adopted. 

1. General description 
In order to demonstrate the techniques of the program, 

a hypothetical modular building system was devised; it 
consists of about twenty different vnits, including walls, 
windows, floor slabs, etc., which can be assembled 
together on a 3-foot square grid. A typical design is 
shown in plan view in Fig. 2, illustrating two basic rules 
which govern the system: all walls, windows and doors 
must lie along grid lines, and each such unit must be 
provided with a supporting column at each end. The 
system was inspired by the IBIS Industrialised Building 
System (Williams, 1965), which it closely resembles. 

The 10-inch square display screen of the 340 is treated 
as a "window" on to a very large drawing board. 
Designs can cover an area measuring 768 ft x 768 ft at 
full scale, or about 15 ft x 15 ft at the scale used 
(roughly \ in. to 1 ft). The screen itself shows only 
a small portion of this area, measuring 12 grid squares 

Computer Science Section, Imperial College, London. 

Fig. 1.—The PDP-7 computer 

Fig. 2.—A simple building design on the screen 

21 

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/1/21/348093 by guest on 13 M
arch 2024



Architectural design 

in each direction. Designs can cover four floors, any 
one of which can be displayed as a horizontal section 
at either floor level or wall-unit level. 

The user operates the program with the aid of the 
light pen and the teleprinter keyboard. All commands 
are given via the keyboard, and the light pen is used 
only to indicate positions on the screen. The program 
starts in an inactive state called Base Mode, with the 
display operating but the light pen disabled. The light 
pen can be enabled, preparatory to using it to delete or 
duplicate an item, by pressing the space bar on the 
teleprinter, and a pen-tracking routine is then called 
into operation. The pen is finally disabled by giving a 
command to return to Base Mode , generally by pressing 
the space bar again. Thus alternate presses on this key 
will enable and disable the light pen. 

Apa r t from those controlling the light pen, the four 
most important commands at the user's disposal are 
duplicate, shift, erase and rotate. Each operation 
involving these commands is terminated by pressing the 
space bar to regain Base Mode and cause the new item 
and its position to be stored. I t is not necessary to 
posit ion the item exactly before inserting it: when the 
space bar is pressed the item " jumps 1 ' to the nearest 
modular position. This permits a tolerance of over 
\ inch in specifying item positions. Items can also be 
inserted by typing an item code preceded by a colon. 
Each of the units has such a code, consisting of two or 
three alphanumeric characters. On typing the colon, 
the routine for finding and tracking the light pen is 
called, and as soon as the item code has been correctly 
typed, a picture of the item appears on the end of the 
light pen. 

The display "window" can be moved one grid space 
in any of four directions by pressing the appropriate 
key; -f, —, < and > were chosen as the most suitable 
symbols to represent movement up , down, left and right, 
respectively. To change from one floor to another 
involves typing a string of three characters—PC2 for 
example. The first letter denotes by P or F whether a 
normal plan view or a horizontal section at floor level 
is required, and the final number gives the floor level. 
The use of C or F as the middle letter allows the user 
to choose between clearing the screen before displaying 
the new level or keeping a picture of the old level as a 
guide. The latter feature is essential on starting to design 
a new floor, as the user cannot otherwise be sure he is 
placing the units correctly in relation to the previous 
level. To avoid confusion, the previous level is displayed 
at reduced brightness. 

Complete designs can be punched out in a compact 
form on paper tape, and the same designs can be read 
in again to any part of the "drawing boa rd" ; these two 
operations are initiated by typing P U N C H and R E A D , 
respectively. A large design in which a small group of 
units occurs repeatedly can be rapidly assembled by 
reading the group oft a previously prepared tape into 
the required positions. 

It was not originally considered that complicated 

Fig. 3.—The area of the indicated room is calculated and 
displayed on the screen 

numerical routines lay within the scope of the project. 
However, to demonstrate that the system would permit 
such extensions, two numerical routines were included. 
The first, which is far from being complex, types out 
an inventory of the units currently contained in the 
design; the second, called by typing " A " , calculates the 
area of the enclosed space within which the light pen is 
pointing. The value appears on the screen near the end 
of the pen, as shown in Fig. 3, and the user can request 
a typed record of this value. 

2. Details of the program 
The 340 Display reads its data directly from the core 

storage of the PDP-7, by autonomous transfer using 
hesitations or "cycle stealing". The program must give 
the display a starting address when initiating the 
transfer, and the 340 then proceeds to read words 
sequentially from that address and to interpret them as 
display data. This will continue without interfering 
with the current program until the 340 reaches a "s top" 
word, when the display halts and a peripheral flag is set. 
By means of the interrupt facility the program can then 
restart the display. 

The 340 can operate in a variety of different modes, 
and interprets its data as points, vectors, etc., according 

22 

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/1/21/348093 by guest on 13 M
arch 2024



Architectural design

MAIN TABLE

5>vJs. jwwvp b b . U.

Fig. 4.—Display table organization, "p:" denotes a parameter
word, setting a fresh mode, light pen status, etc., as indicated.
In this example, the first items of both display lists are identical,

and therefore share the same display unit

23

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/1/21/348093 by guest on 13 M
arch 2024



Architectural design

to the current mode. An additional subroutine mode
facility permits jumps to be inserted in the display data
"table"; these can be either true subroutine jumps, each
with a return jump stored elsewhere in core, or simple
non-return jumps.

The light pen (Sutherland, 1963; Stotz, 1963) is a
simple photo-electric device connected to a flag which
can be tested by the program. Tracking is performed
in this particular program by means of a small spiral
raster; as soon as a new pen position is picked up, the
centre of the raster is moved to this spot.

The simplest possible table of display data contains
all the necessary points and vectors in a single block of
store, but requires frequent reorganization to close gaps
caused by deletions. Such re-arrangements can only be
carried out between stopping and re-starting the display,
and may cause unwelcome delays or flicker. Other
reasons for discarding this type of table were the difficulty
of tracing individual entries in the table, and the
necessity of dealing with large units whose pictures
might extend off the edge of the screen. Such edge
violations cause an interrupt to the PDP-7, and are best
avoided in the interest of keeping a fast display.

A self-organizing table was therefore used, employing
multiple list-structures for storing the subroutine jumps
to the unit pictures. Each list is associated with one
square on the display, and is constructed from a variable
number of four-word blocks (Comfort, 1964). Each
picture subroutine is made up entirely of visible and
invisible vectors; the starting point of the picture
coincides with the finishing point, and the whole picture
is contained within one grid square. A number of these
subroutines are necessary to portray one of the larger
units, and must be inserted in the lists of a set of
adjacent squares.

Fig. 4 shows diagramatically the arrangement of the
display table. Each of the 144 grid squares within the
display window has a three-word entry in the main
table, and if a square contains any items, a list of jumps
to the appropriate display units (i.e. picture subroutines)
is attached to this point in the table. Each jump is
placed at the head of a four-word display block, and is
followed by a "pointer" or jump to the next display
block. New display blocks are added at the top of the
appropriate lists, and deletions can be made by moving
the pointer from one block to the one above.

Changes within the display table therefore consist
almost entirely of alterations to pointers in these lists
and to the parameter word which precedes each pointer.
This parameter word is necessary for selecting sub-
routine mode, and is also used to set brightness and
scale and to indicate in which segment of the grid square
the next display unit in the list lies. Normally, therefore,
a pointer is moved together with its parameter word,
and these two words are placed in a display entry block
to await insertion when the display stops. A large
number of entries may be made to the display, and the
entry blocks involved are chained together to form an
Entry Block List. Like display blocks, entry blocks are

of four words each, and therefore there is a continuous
need for four-word blocks, particularly as blocks of the
same size are used for permanently storing the position
of each item. These blocks are all supplied from the
same Available Block List, and as soon as a block is
no longer needed it is returned to this list. In this way
the program dispenses with the need for any periodic
garbage-collecting routines.

It has been possible to devote almost the whole of the
upper half of the 8192-word store to the Available Block
List, which therefore contains 1000 blocks when the
program is started. Items are stored in nine Floor
Storage Lists, representing the nine permissible levels in
a four-storey building. When an item is added to the
design, its type and position are stored in a four-word
block fetched from the Available Block List, and this
block is added at the head of the appropriate Floor
Storage List. Thus items are stored in these lists in
their order of insertion; a more associative method of
storage would be advisable if more processing were to
be done on the design.

Moving the display window
Since the items are stored in lists, rather than in core

locations corresponding to their actual positions, a
complete list search is necessary to discover which items,
if any, occupy a given grid square. The routine for
setting up a fresh display, when the user requests a new
level, is organized into two subroutines, and makes
extensive use of list searches. The first subroutine
searches the appropriate Floor Storage List for items
which lie wholly or partly within the display window,
and each such item when found is inserted in the display
by the second subroutine. The latter subroutine is
equipped to deal with items extending across more than
one grid square: in these cases there is a separate display
unit for each square which the item occupies, and before
inserting each of these units in its appropriate display
list the subroutine checks that the unit lies within the
display window. If it does not, the display unit is
omitted.

Horizontal movements of the display window are
achieved by moving all the display lists up or down the
main display table. Only two alterations need be made
to each list: the pointer to the first display block is
moved to a new place in the table, and the return jump
in the last block is adjusted. Before moving the pointers,
all the display blocks in the 12 "leading" squares are
returned to the Available Block List, and after all
moving is complete the 12 "trailing" squares are filled
by the two subroutines described in the preceding
paragraph.

Duplicating and erasing items
In order to duplicate an item on the screen, the

program has a routine for recognizing at which item the
light pen is pointing. It does so by searching through
the display list that belongs to the square under the pen.

24

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/1/21/348093 by guest on 13 M
arch 2024



Architectural design

For this purpose the aim of the pen must be more
accurate than when making insertions: the small
diamond-shape indicating the pen position must lie
within or partly within the item boundary. This is the
reason why the parameter word preceding each display
list pointer contains positional information—the list is
simply searched until a display unit is found which
occupies the same segment of the grid square as the
light pen. It is then quite easy to place the same set of
display units on the pen, ready for insertion.

On typing "E" to request an erasure, the same routine
as above is used to identify the item under the pen.
Each of the item's display units is then replaced by a
blank display unit, so that the item disappears. The
addresses of the display units removed in this operation
are temporarily stored in a "Scrap List" made up of
four-word blocks, so that if the user wishes he can
replace them by pressing the "return" key. On the
other hand, if the user presses the space bar, indicating
that he wishes to confirm the deletion, the information in
the Scrap List is sufficient to identify the item involved
and to remove its display and storage blocks permanently.

Moving an item is the logical combination of all the
operations involved in duplicating and erasing. A
similar Scrap List is set up, so that the item can be
returned to its original position by typing "return".

Calculating areas
The program computes areas of enclosed spaces by

completely traversing the perimeter of the space, mean-
while performing the integral fydx. When the
starting point on the perimeter is reached, the current
value of the integral is converted to square feet and
displayed on the screen under the light pen. The
method of traversing the perimeter is quite simple, but
is fairly time-consuming because of the large number of
list searches involved.

The grid square is too large a unit for accurate deter-
mination of areas, so each of the four segments of a
square is treated separately. The "tartan" grid which
thus arises is illustrated in Fig. 5, where it is shown
superimposed by a test grid whose equally-spaced lines
bisect the segments of the tartan grid. The perimeter
point follows the lines of the tartan grid during the
traverse, and its path, which determines the area, is
established by a succession of tests made at the inter-
sections of the test grid (test points). The purpose of
each test is to find whether the test point is vacant or
occupied by an item, and each item in the local Floor
Storage List is therefore checked against the coordinates
of the test point until an item occupying the point is
found, or until the end of the list is reached.

Once a starting point on the perimeter has been found,
the traverse algorithm takes over, using the following
rules:

(i) Each test step is from the most recently found
vacant test point to one of the four adjacent
points.

(ii) If a test point is found to be occupied, the next

25

typical

wall
units

test
point

test
grid

Fig. 5.—Grids used in area computation

Fig. 6.—Fragment of a traverse during area computation

step is at 90° clockwise to the previous step, and
the perimeter point is moved in the same direction
to the next tartan grid point.

(iii) If a test point is vacant, the next step is at 90°
anti-clockwise to the previous step, and the
perimeter point is not altered.

Fig. 6 shows the test steps involved in a typical section
of a traverse, starting at A and finishing at B.

Each time the perimeter point is moved, y dx is added

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/1/21/348093 by guest on 13 M
arch 2024



Architectural design

to the area integral, and the traverse is complete when the
starting point is reached. The initial routine for finding
the starting point consists of searching in the +y direc-
tion from the position of the light pen until an occupied
test point is found.

This method as it stands cannot find the area of an
obstructed space such as a courtyard containing a free-
standing structure. However, because the program is
continuously scanning in the +y direction from the
position of the light pen, the user can "present" these

References

WILLIAMS, A. (1965). "IBIS Development Project," Architect and Building News, Vol. 227, p. 156.
SUTHERLAND, 1. E. (1963). "Sketchpad: A Man-Machine Graphical Communication System," AFIPS Conf. Proc, Vol. 23,

p. 329.
STOTZ, R. (1963). "Man-Machine Console Facilities for Computer-Aided Design," AFIPS Conf. Proc, Vol. 23, p. 323.
COMFORT, W. T. (1964). "Multiword List Items," Comm. Assoc. Comp. Mach., Vol. 7, p. 357.

obstructions to the program by moving the pen beneath
them. Their area is then automatically subtracted from
the displayed total.

Acknowledgments
I wish to express my thanks to Professor M. V.

Wilkes for generously allowing me to make extensive
use of the PDP-7 computer, and to Mr. N. E. Wiseman
and Dr. R. Penrose for advice and assistance in develop-
ing the program.

Book Review

Learning Machines, by Nils J. Nilsson, 1965; 132 pages.
(Maidenhead: McGraw-Hill Publishing Company, Ltd.,
80s.)

The scope of this book is more restricted than the title suggests,
since (a) only machines for pattern classification are treated
and {b) even within this, detailed consideration is given only
to that part of the classification task which remains when the
coordinates of the pattern space have already been chosen.
Restriction (a) does not seriously reduce the range of appli-
cation of the treatment, since learnable tasks other than
pattern classification can usually be decomposed in such a
way that pattern classification plays a part. Restriction (Jb) is
more serious, and is partially acknowledged in a section
headed "The problem of what to measure".

The problem of choosing suitable pattern-space coordinates
is not just that of deciding what to measure, however, at least
in the case of machines using relatively simple types of
discriminant function. The detailed mathematical treatment
in the book is restricted to these. Such machines can only be
successful if the representations of equivalent patterns are
reasonably well clumped together in the pattern space. In
most non-trivial applications it will therefore be necessary to
process the input data before presenting it to the learning
machine.

In the case of more complex machines, such as one con-
sisting of more than two layers of adjustable elements, it is
conceivable that useful learned behaviour could be achieved
using the raw data as input. Part of the machine (e.g. those

layers nearest the entry points of the input pathways) might
learn to perform appropriate coordinate transformations.
What training algorithms would be useful in such a machine
is still an open question, though it is the faith of most workers
under the banner of "Cybernetics" that suitable ones can be
found. The difficulty of finding them is emphasized by the
present book where, even in the case of two-layer machines,
the only training algorithm given is one which modifies only
one of the layers.

The restrictions on the scope have been emphasized because
they are not implicit in the title, and because restriction (b) is
often underemphasized in the literature on pattern-classifying
devices. The book is useful in spite of them and is an
admirable review of a body of very sound mathematical work
which has been stimulated by studies of perceptrons and
related devices. A variety of types of discriminant function
is treated, as well as training algorithms and their respective
convergence proofs.

One chapter is devoted to layered machines. Since the
study of these, particularly where the number of layers is large,
is presumably the key to further progress, it is useful to have
this summary of what has been achieved. It turns out to be
remarkably little.

The book presents a large amount of useful information
in a clear and readable way. It is well produced, as it should
be at the price, and will be valuable to anyone interested in
machine learning or pattern recognition.

A. M. ANDREW

26

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/1/21/348093 by guest on 13 M
arch 2024


