
The equivalence of certain computations

By D. C. Cooper*

Both iterative and recursive programs for computing generalizations of functions which obtain
the factorial of an integer, which reverse the order of symbols on a list and which obtain the
approximate integral of a function are given as recursive definitions using conditional expressions.
The equivalence of the iterative and recursive definitions are proved and a general theorem on
equivalence, from which some of the results may be deduced, is stated and proved.!

J. McCarthy (1960, 1962 and 1963) has laid a foundation
for a mathematical theory of computation, a foundation
that provides a mechanism for defining computable
functions in a manner that is more natural than other
schemes such as Turing machines and Markov algorithms.
By more natural here we mean that the formalism is
closer to the way we express the computable functions
that concern us than are other schemes with the same
amount of generality. Hopefully then the system is one
in which it should be easier to prove theorems (as
contrasted with proving metatheorems about the system)
than it is in other foundations. It is the purpose of this
paper to take some "real problems" and to see how the
system deals with them.

The particular problem with which we shall be con-
cerned is proving the equivalence of two computations.
By saying that two computations are equivalent over
some set of legal data for them we mean that if the same
legal data is presented to the two programs denning
these two computations then either both programs will
fail to produce an answer (i.e. get stuck in a loop) or
they will both produce the same answer. If the com-
putations are represented by function definitions (as in
McCarthy's theory of computation) then we take two
functions as being equivalent over some domain of
values if for any argument in that domain either both
functions are undefined or both have the same value.
We shall take some computations which we "know" are
equivalent and then prove this equivalence. These
computations will take the form of (a) recursive pro-
grams to compute some function and (b) equivalent
iterative programs that compute the same function.
For a certain class of recursively defined functions,
essentially those which can be defined by the primitive
recursion schema, we show some circumstances in which
an automatic conversion to an iterative program could
be made. Having produced these "known equivalent"
computations we then prove their equivalence; from
these proofs we spot a general theorem on the equivalence
of two recursive definitions and then prove the theorem.
"General" here means that the theorem can be applied
in more than one case, rather than in all cases!

t The research reported here was supported by the Advanced
Research Projects Agency of the Department of Defense under the
Contract SD-146 to the Carnegie Institute of Technology.

The computations we wish to prove equivalent will
initially be in the form of a computer program (for
example written in the ALGOL language) or perhaps
in the form of a flow chart. These must be converted
into recursive definitions of functions, the definitions
normally involving conditional expressions. McCarthy
(1962) gives two different methods for this process. In
his Sections 12 and 13 he sketches a method for defining
a recursive function algol (rr, £) whose value is the state
of the "algol machine" at the conclusion of the algol
program IT, when this program is started with the state
of the machine £. The equivalence of two particular
programs, A and /LA say, is then a property of the function
algol, namely algol (A, £) = algol (/x, £), and to prove
equivalence we must prove that this equation is satisfied
for all relevant | , where algol is a given function. This
"interpreter" approach seems well adapted to answering
questions about compilers, but not so convenient
for answering questions about particular programs.
An alternative "compiler" approach is described in
McCarthy's Section 9 and also in an earlier paper
(1960). In this approach a mechanical procedure is
described for producing from a flow chart an equivalent
recursive function definition. Corresponding to any
two programs, A and p. represented by flow charts, we
then have two recursive functions />,(£) and f^O), and
to prove equivalence of the two programs we have to
prove /?.(£)=/n(f) f°r the relevant £. This is the
approach we adopt in this paper, except that we shall
take as arguments of functions those components of £
that are relevant rather than have a single argument f.

Notation
This paper is based on the recursive definition of

functions using conditional expressions, as introduced
by McCarthy (1960, 1962, 1963). We use the notation

[/»,-*<?,; P2->e2; . . .; />„-> en;;en+l]

which corresponds to the ALGOL expression

if Pi then ey else if P2 then e2 • • . else if Pn then en else

This notation seems to avoid confusion with round
parentheses and commas which are only used in this

* Computer Science Department, Carnegie Institute of Technology, Pittsburgh, Pennsylvania, U.S.A.
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Equivalence of computations

paper to enclose and separate arguments of functions.
The final ; ;en+1 represents an "in all other cases"
expression and need not be present. The most common
conditional expression in this paper takes the form
[P—>x;;y] and is McCarthy's elementary conditional
form (1963).

A device is used to aid readability by cutting down
the number of brackets enclosing function arguments.
A function with one argument, F(x) say, may be written
with the argument as a subscript on the function name,
i.e. Fx. This device is not always used, we may still
write F(x), but subscripts are used for no other purpose
in the remainder of this paper.

Example 1: the factorial function
We start by considering three ALGOL procedure

declarations for the factorial function, the first a recursive
definition and the other two iterative definitions.

integer procedure Fr(N); value TV; integer TV;
Fr := if TV = 0 then 1 else N*Fr{N - 1)

integer procedure Fd(N); value TV; integer TV;
begin integer A; A:=\;
L: if TV > 0 then begin A := N*A; TV := TV — 1;

go to L end; Fd := A
end

integer procedure Fu(N); value TV; integer TV;
begin integer A, M; A'. := 1; M := 0;
L: if M < TV then begin M := M + 1; A. := A*M;

go to L end; Fu : — A
end

Writing the above ALGOL definitions as recursive
function definitions using conditional expressions we
have:

Fr(N) = [TV = 0 -+ l;;N*Fr(N - 1)]
Fd{N) = Gd(N, 1) where
Gd(N, A)=[N=0 -+A;;Gd(N - 1, N*A)]
Fu(N) = Gu{N, 0, 1) where
GM(TV, M, A)=[M = N-*A;;Gu(N, M + 1,

(M + I)* A)].

The equivalence of Fr(N), Fd(N) and Fu(N) may now
be proved using recursion induction (see McCarthy
(1963), page 58), properties of conditional expressions
and properties of the functions occurring in the
definitions, i.e. plus, minus and multiplication. Rather
than do this we first obtain some function definitions
of which these are special cases, and obtain proofs for
these generalizations.

Example 2: generalization of the factorial function
We are more interested in the form of the definition

of Fr than in the fact that it involves the multiplication
and predecessor functions; let us therefore try to

generalize the definitions so as not to include specific
functions nor depend on properties of the integers. In
the definition of Fr then:

(i) Replace TV — 1 by a general "decrementing"
function S(TV).

(ii) Replace the multiplication by a general function
H with two arguments,

(iii) Replace the numerical constants 0 and 1 by L
andfi.

There are then obvious similar replacements to be
made in the definitions of Gd and Gu, but two further
replacements are necessary:

(iv) In the definition of Gu we have " M + l " ;
adding 1 is the inverse operation to subtracting 1
and therefore we must replace M + 1 by o(M)
where a and S are related by

TV = CT(S(TV)) = S(cr(TV)).

A less stringent relation will be obtained later,
(v) The multiplication function has many properties

such as associativity which we might not wish to
assume of our function H. In this case the
multiplication function occurring in the definition
of Gd will have to be replaced not by H but by
some other function E which will be related to H
in a way we describe later.

Making these replacements we obtain the following
generalized definitions of Fr, Fd and Fu.

Fr(N) = [N=L^ B;;H{N,Fr(8N))] (1)

Fd(N) = Gd(N, B)

where

Gd(N, A)=[N=L-*A;;Gd(8N, E(N, A))] (2)

Fu(N) = GM(TV, L, B)

where

Gu(N, M,A)=[N=M->A;;Gu(N, aM, H(aM, A))] (3)

where we remember that 8N and aM are abbreviations
for 8(TV) and o(M).

What is the relation between the functions H and El
One can readily see from definitions (1) and (2) that

Fr(N) = //(TV, H(8N, H(82
N, . . ., / / (§V, B) . . .)))

and

Fd(N) = £ (8V, • • •= ^(S& E(8N, E{N, B))) . . .)

where S^ means S(S(TV)), etc., and A is the smallest
integer such that SN = L.

We wish to have Fr(N) = Fd(N) for all relevant TV.
A sufficient condition on H and E for this to be true is
that, for all a, j8 and y,

H(oc, B) = E{a, B)
and

//(a, E(B, y)) = E(B, //(a, y)) (4)
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Equivalence of computations

where it should be noted that B is a special constant of
our universe, so the first of these equations only implies
equality of the functions H and E if their second
arguments take this special value.

An intuitive proof of the sufficiency of equations (4)
is easy. By the first of equations (4) the inner E in the
above expansion of Fd(N) can be replaced by H.
Repeated use of the second of equations (4) will move
this H to the front. Now repeat this whole process on
the new inner E, and so on until there are no £"s left.
We will then have Fr, thus "proving" that Fr(N) = Fd(N)
if equations (4) are satisfied.

We therefore state the following two theorems:

If equations (4) are satisfied then Fr(N), defined by
equation (1), is the same function as Fd(N), defined by
equations (2).

If equations (5) are satisfied then Fr(N), as defined by
equation (1), is the same function as Fu(N), defined by
equations (3).

a(8(N)) = SKAO) = N. (5)
These theorems should include statements about the

values of N for which the functions Fr, Fd, and Fu are
defined.

Further remarks on the generalization
Recursive definition (1) is equivalent to a recursive

flow chart or ALGOL program, whilst recursive defini-
tions (2) and (3) are equivalent to iterative programs;
they are in the iterative form defined by McCarthy
(1962) in Section 9. We therefore see that we can
provide a mechanical procedure for converting a recur-
sive definition which fits the form of equation (1) to an
iterative form, so long as we can produce either the
function E satisfying equations (4) or the function a
satisfying equations (5). Notice that equations (2) are
essentially the scheme for definition by primitive
recursion.

As another example which fits the form of equation (1)
consider the interpretation in which N is a list, L and
B are both the empty list and we have:

S(AO is the list obtained by deleting the first member
of list N.

H(N, A) is the list obtained by adding the first member
of the list N at the end of list A.

Then it is clear that Fr(N) is the function that reverses
the order of symbols on the list.

Can we produce the functions E and a? Consider
the function E defined by:

E(N, A) is the list obtained by adding the first member
of list N at the front of list A.

Then equations (4) are satisfied and we have produced
an equivalent iterative definition (2).

The function a satisfying equation (5) does not exist;
to satisfy o(8(N)) = N the function a must add to the
list 8(N) the same term that 8{N) removed. However,
if we add a second argument to a, which will be the
original list, then a can perform that function.

We therefore modify equations (3) and (5) as follows:

Fu(N) = Gu(N, L, B)
where

Gu(N, M, A)=[N =

CT(S(AQ, N) = N and 8(a(M, N)) = M.

y,Gu{N, a(M,N),
H(a(M, N), A))] (3')

(5')

It will still be true that Fr = Fu if equation (5) is replaced
by equation (5')-

We can now give the function a for the list processing
case. It is: a(Af, N) is defined if and only if the list N
is the list M preceded by one or more symbols, the value
of cr(M, N) is then the list obtained by adding to the
front of the list M that member in front of M where it
occurs as a sublist in N.

With this modification of the equations (3) and (5)
the function a always exists and can be defined by the
recursive definition (in iterative form)

a(M, N) = [8N = N;;a(M, 8N)].

Example 3: approximate integration
A recursive definition may be used in a programming

language that does not allow recursion by explicitly
setting up a stack and saving all necessary intermediate
results in this stack at appropriate points in the program,
later restoring them, i.e. we include the mechanism
necessary to deal with recursion as part of our program
rather than using a mechanism provided for us in the
system. We set up such an equivalence and later prove
that the two definitions define the same function. We
use an example which does not fit the schema of
equation (1).

We wish to define the function I(a, b), an approxima-
tion to the integral of some function f(x) from a to b.
We do not wish to vary the function / and so do not go
to the trouble of including/as a third argument of the
function / and of other functions to be introduced. We
have some function S(a, /9) which gives an approxima-
tion to the integral from a. to /? which may or may not
be acceptable. We have a predicate P(a, fi) which is
true if 5(a, j8) is an acceptable approximation, and is
false otherwise. I(a, b) is then obtained by repeatedly
dividing intervals into two equal halves until P(u, j8) is
satisfied in all intervals (a, jS), and then adding up the
contributions S(<x, /3) from all intervals.

A recursive definition of I(a, b) is then

Ir{a, b) = [P(a, b)

where a

•S{a,b);Ma, b)+Ir(a@b,b)]
(6)

b is (a + b)/2.

If we have available the list processing functions of
LISP, see McCarthy et al. (1962), then we can give an
iterative definition that is equivalent to (6) in several
ways. One such is

fi(a,b)=f(0,{a,b})
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where

f(V, L) = [null(cdrL) -* V; P(carL, cadrL) ->
f(V +S (carL, cadrL), cdrL);;/(K,/w(carL ©cadrL, L))]

(7)
{a, b) is the list with two members a and b;
carL and cadrL are the first and second members of the

list i ;

null(cdrL) is true if the list L has exactly one member;
and we define

ps{V, L) = cons(carL, cons(K, cdrL)) (8)

i.e. ps(V, L) is the list obtained by inserting V after the
first member of L.

This recursive definition, in iterative form, was
obtained by applying McCarthy's process to a flow chart
of a program to obtain the approximate integral by an
iterative process; the reader may easily deduce this flow
chart for himself. The value of V is the value of the
approximate integral from a to the first point on list L.
The remaining members of L are points obtained by
subdivision, i.e. are points up to which we must integrate
if Ii is to be exactly the same function as Ir. The last
member of list L is b itself.

We shall later prove the equivalence of Ii and Ir. In
order to do this we need to modify their definitions and
it is convenient to do this now. Remembering the
intended meaning of V it is clear that we should be able
to prove the equation f{V, L) = V +/(0, L). If this
equation is used throughout (7) the function / will
always have its first argument zero, and we can therefore
use a function of one variable instead of two.

We therefore define

Ij(a, b) = g({a, b})
where

g(L) — [null(cdrL) -»- 0; P(carL, cadrL) -* 5(carL, cadrL)
+ g(cdrL); ;g(ps(carL © cadrL, L))]. (9)

This is another definition of our function, but of course
not one in iterative form.

One difficulty in proving the equivalence of Ir and Ij
is that Ij is defined in terms of a function g with a different
domain from Ir. It is trivial to change the definition of
Ir so that it has one argument {a, b) instead of two,
a and b, but it will still only be defined on lists with
two members whereas g is defined on lists with any
number of members (apart from the empty list). A
good heuristic principle to use in this kind of situation
is: try and extend the definition of Ir to the domain of
g in such a way that the two functions become equivalent
over this wider domain. Such an extension to the
definition of Ir is

h{L) = [null(cdrL) -* 0;; /r(carL, cadrL) (10)

We shall later prove that g(L) = h(L) and also that
Ii{a, b) = Ij(a, b); it is then trivial to prove that
Ha, b) = Ii(a, b).

Proofs
We now give proofs, using recursion induction, of the

following:f
(A) if equations (4) are satisfied then Fr — Fd

(equations (1) and (2))
(B) if equations (5) are satisfied then Fr = Fu

(equations (1) and (3))
(C) // = Ij (equations (7) and (9))
(D) g = h (equations (9) and (10))
(E) // = Ir (equations (6) and (7)).

The principle of recursion induction states that if we
have an equation, or set of equations, which over a
certain domain D is a legal recursive definition of some
function, and if we have two previously defined functions
which both satisfy these defining equations, then the
two functions are equivalent over D. Loosely speaking
a recursive definition must define a unique function.

As yet we have no techniques for proving that a
recursive definition is legal over some domain D. It is
intuitively obvious that the factorial function definitions
are legal over the domain of non-negative integers, but
do not define any values for negative integers. In this
paper we shall ignore the admittedly important question
of what is the domain of legality of our recursive
definitions. However, in all cases this is obvious and
it would be a not very difficult task to set up certain
schema as being defined to be legal definitions over
certain domains (essentially these are properties of the
basic functions "predecessor" and "cdr") and certain
rules giving transformations which preserve legality and
thus prove the legality of all our recursive definitions.

Proof A. Fr = Fd
We first prove the following lemma:

Gd(8N, H(N, A)) = H{N, Gd(8N, A)). (11)
The key to proving this seems to be to replace N on both
sides (except where it occurs as an argument of the
function 8) by a new variable S. One can then obtain
a recursive equation in N satisfied by both sides of
equation (11) in which S occurs as a parameter.
Define
if){N, S, A) = Gd(N, H(S, A)) and X W S, A) =

N(S, Gd(N, A)).
Then using equation (2)

,A) = [N=L-+ H(S, A);;
Gd(8N,E(N,H(S,A)))]

Gd(8N,H(S,E(N,A))))
(use equation (4))

= [N = L -* H(S, A);;if>(8N, S, E(N, A))]

t By writing f = g where/and g are function names we mean
that the two functions are equivalent in the sense explained in the
introduction to this paper.
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and using equation (2) again

X(N, S, A) = [N = L^ H(S, A);;H(S, Gd(8N,E(N, A)))]

= [N=L-> H(S, A);;X(SN, S, E(N, A))].

We have thus shown that both >p and x satisfy the same
recursive definition; therefore they are the same function.
Substituting 8N for N and N for S proves the lemma.

In equation (11) substitute B for A and then use the
first of equations (4); this gives

Gd(8N, E(N, B)) = H(N, Gd(8N, B)).

Substitute B for A in equation (2) and use the above
equation; this gives

Gd(N, B)=[N=L-+ B;;H(N, Gd(8N, B))]
or

Fd(N) =[N=L->B; ;H{N, Fd(8N))].

This equation has the same form as equation (1) and
so we have proved Fr = Fd by recursion induction.

Note that throughout this proof we could have had
a general predicate P(N) in place of the predicate
N = L; thus we could have replaced N = L by P(N)
in equations (1) and (2).

Proof B. Fr = Fu

Define
Gr(N,M,A) = [N=M-
so that

A;;H(N,Gr(8N,M, A))] 02)

FrN = Gr(N, L, B).

We now prove that Gr = Gu. Note that although in
the last proof we could have extended the definition of
Gd to have a third argument, L, in exactly this manner,
this would not have helped us for proof A. It would
not have been true that Gr — Gd, only that they were
equal for the special value B of their last argument. In
this case, however, the extension does help; it is true
that Gr = Gu.

Define

X{N, M,A)=[N=M^A;;H(N, Gu(8N, M, A))]
(13)

i.e. the right-hand side of the definition of Gr with Gr
changed to Gu.

Then using equation (3)

A;8N = M^ H{N, A);;

H(N,Gu(8N,aM,H(aM,A)))]

, aM, H(aM, A))]

where we have used equations (5) in the form
8N = M = N = aM. Therefore by recursion induction
X = Gu (as this last is of the same form as equation (3)
defining CM).

Replace x(N, M, A) by Gu(N, M, A) in equation (12)
and we then have Gu satisfying the defining equation of
Gr, and so we have proved Gr = Gu by recursion
induction.

Substituting L for M and B for A gives Fr = Fu.

computations

Proof C. // = Ij
The function Ij is defined recursively; the definition

of // is an iterative definition counting down. Their
equivalence may be proved directly by a similar proof
to proof A or we may assume the result of proof A
and deduce the equivalence of // and Ij. This latter
may be done as follows.

Equations (7) and (9) are not directly in the form of
equations (2) and (1); this is because the list L of
equations (7) and (9) is not the list of points through
which we have to move by using the function cdr;
there may have to be interpolations. We can define
the correct stepping function and therefore make the
following definitions:

8(L) = [P(carL, cadrL) -> cdrL; ;8(ppsL)]

where

pps{L) = ps{c&rh ® cadrL, L) (see equation (8))

« ' ( ! ) = [null(cdrL) -»• 0;;S(carL) car(SL)) + g'tfj]

f'{V, L) = [null(cdrL) -»• V;;f'(V + S(carL, car(8L)). «L)].

Now using the definition of S in the definition of g' we get

g\L) = [null(cdrL) -> 0;P(carL, cadrL) -> S(carL,

cadrL) + g'(cdrL);;5(carL, car(8(ppsL)))

But using the fact that car(ppsL) = carL we see that the
last expression of this conditional expression is g'(ppsL).
We have therefore proved by recursion induction that
g = g' and may prove in exactly the same way that

If we remember the remark at the end of proof A,
and in equations (1) and (2) specialize H and E to be
given by

H(N, A) = E(N, A) = S(czrN, car(SN)) + A

then from the equivalence of Fr and Fd we can deduce
that

g'(L)=f'(0,L).

This, using g = g' and / = / ' , immediately leads to the
equivalence of // and Ij.

Proof D. g = ft

We can show directly that h (equation (10)) satisfies
the recursive definition for g (equation (9)), i.e. that

h(L) = [null(cdrL) -»• 0;PPL -»- SSL + h(cdrL);;

h(ps(<xL, LJ) (14)

where

PP(L) = jP(carL) cadrL)

SS(L) = 5(carL, cadrL)

and

<x(L) = carL © cadrL.
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Define

L, L)) = A(cons(carL, cons(aL, cdrL)))
= /<carL, aL) + /z(cons(aL, cdrL))

(by equation (10))
= /<carL, aL) + /r(aL, cadrL) + /j(cdrL)

(by equation (10) again).

Also using equation (6) in equation (10) we get

h(L) = [null(cdrL) -> 0;PPL -> SSL + h(cdrL);;

/r(carL, aL) + Ir(*L, cadrL) + h(cdrL)]

and using the previous expansion of h(ps(<xL, L)) we have
equation (14); we have therefore proved by recursion
induction that g = h.

Proof E. // = Ir

From equation (10)

h({a, b}) = Ir{a, b) + h«b}) = Ir(a, b).

Therefore

Ir(a, b) = h({a, b})

= g({a, b})

= Ilia, b)

= H{a, b)

by proof D
by equation (9)
by proof C.

A general method

We have now proved the equivalence of several
functions, both as original proofs above and as lemmas
for these proofs. The purpose in doing this was to
obtain some kind of a feel for the way these proofs go,
and hopefully to pinpoint some particularly useful proof
methods. The majority of the proofs above were easy
to obtain, any reasonable approach leading to a proof;
but proof A (and proof C which we have shown to be
effectively the same as proof A) was much more difficult
to find. We now give a general method which can be
used in proving the equivalence of functions, and which
applies to all our equivalences except the main equi-
valences of proofs A and C.

This method is a generalization of the technique used
in proof B to show the equivalence of Gr and Gu. Let
us now change our notation slightly, allowing only
functions of a single variable so that we regard Gr
(equation (12)) as being a function of x where x is a
3-list {N, M, A}.

The form of the defining equations for Gu and Gr
(equations (3) and (12)) is

(15)= Eu(Gu{ux), x)
Gr(x) = Er(Gr(rx), x)

where Eu and Er are given conditional expressions and

u{{N, M, A}) = {N, aM, H{aM, A)}

r({N, M, A}) = {8N, M, A}.

Proof B then goes as follows.

whence

X(x) = Er{Gu{rx\ x)

X{x) = Er(Eu(Gu(u.rx), rx), x). (16)

We introduce the notation u.rx standing for u{r{x)) and
later extend the notation to f.g.hx to stand for j{g(h(x))),
etc.

But it is clear that u.rx — r.ux; using this and pro-
perties of the actual conditional expressions Er and Eu
equation (16) becomes

whence

X(x) = Eu(Er(Gu(r.ux), ux), x)

X{x) = Eu{X{ux), x).

Therefore by recursion induction Xx = Gux; using this
in the definition of X we again have by recursion
induction that Gux = Grx.

This proof worked because we had a relation between
the functions u and r, the relation u.r = r.u, and could
show by manipulations of conditional expressions that
Er(Eu(<&, rx), x) = Eu{Er{<&, ux), x). We can generalize
this result to cases where we are given other relations
between the function u and r.

Theorem

Given:
(1) A domain D.
(2) Two partial functions u(x) and r(x) with arguments

taken from D.
(3) Two recursive definitions defining total functions

Gu{x) and Gr(x) over the domain D.

Gu(x) = Eu{Gu{ux), x)\ (17)
Gr(x) = Er(Gr(rx), x) j

where Eu and Er are conditional expressions.

(4) An equation

P . p . ...fx = g * . g 2 . . . . & (18)
where each f and g' is either the function r or
the function u and both sequences are not the
same sequence. The equation is to be satisfied for
all x in D, this to mean that either both sides of
the equation are defined and have the same value
or both are undefined.

(5) A relation R which well-orders D and has the
properties that

u(x)Rx if u{x) is defined
r(x)Rx if r(x) is defined.

It then follows from the transitivity of R that

8(x)Rx if §(x) is defined

where

S ( x ) = p . p . ...fx (19)
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(6) The following two recursive definitions of functions
Gf{x) and Gg(x)

Gf[x) = Ef(Ef-> . . . (EP(Gf(8xlp.p. . . .f"x),
P. ...fl),...fn

x),x)
Gg(x) = Eg^Eg"-* . . . (Eg\Gg(8x), g*.gK . . . g?),

g3- •••£?), ...Si"),*) (20)

where Ep is either the conditional expression Er
or the conditional expression Eu depending on
whether/' is r or w, and similarly for Eg1.
Then

(I) The functions Gf and Gg are defined for all x
inD.

(II) For all x in D Gu(x) = Gr(x) if and only if
for all x in D Gf(x) = Gg(x).

We note that equations (20) define both Gf and Gg at
a point x by means of conditional expressions involving
the defined function evaluated at the same point 8(x).
In all cases tried, trivial manipulations showed that these
were the same conditional expression, thus proving
Gf= Gg and thence by the theorem Gu = Gr.

We will prove only a special case of the theorem, but
the following proof technique is obviously valid in
general. Consider then the special case when equations
(18) and (19) are particularized to be

8(x) = r.ux = u.u.rx.

This situation is illustrated in Fig. 1 where points
indicate possible arguments for our functions, the
function u is indicated by sloping lines downward and
to the left, the function r by sloping lines downward
and to the right. Choosing 1 to be any point x we
always have such a configuration, assuming the functions
u and r to be defined at the relevant points.

In this case equations (20) become

Gf{x) = Eu(Er(Gf{8xl ux), x)
Gg(x) = Er(Eu(Eu(Gg(8x), u.rx), rx), x). (21)

The proof of I depends on having techniques for
proving that a given proposed recursive definition really
does define a function over some given domain D.
This paper has not gone into this question at all, and
so we do not give a formal proof; in fact, all the actual
functions defined in this paper are "obviously" good
definitions, and only depend on such properties as if
we start with any list and keep performing the cdr
function eventually we must obtain the null list.

Let us now prove II. First assume that for all x'm D
Gu(x) = Gr(x).

Then we have
Gu{x) = Eu(Gu(ux), x)

= Eu(Gr(ux), x)
= Eu(Er(Gr(r.ux),ux),x)
= Eu(Er(Gu(8,), ux), x)

\
Fig. 1.—Configuration of points if r.ux = u.u.rx

and also

Gr{x) = Er(Gr(rx), x)
= Er(Gu(rx), x)
= Er(Eu(Gu(u.rx),rx),x)
= Er(Eu(Eu(Gu(u.u.rx), u.rx), rx), x)
= Er(Eu(Eu(Gr(8x), u.rx), rx\ x).

We have shown that Gu satisfies the Gf equation and
Gr satisfies the Gg equation. Therefore, by recursion
induction Gu = Gf and Gr = Gg and it then follows
that G/= Gg.

Now assume that for all x in D Gf(x) = Gg(x). We
shall prove by the method of transfinite induction that
for all x in D Gr(x) = Gu(x). (The principle of trans-
finite induction states that if R is a well-ordering over a
domain D and if P(x) is a property such that assuming
P(z) is true for all z with zRx we can prove that P(x)
is true, then P(x) must be true for all x in D.)

The property P(x) which we shall prove true is that
Gu{x) = Gr(x) = Gf(x). Now take any x in D and we
have

Gf(x) = Eu(Er(GJ{r. ux), uJ, x)
= Eu(Er(Gr(r.ux), ux), x)

= Eu(Gr(ux), x)
= Eu(Gu(ux), x)

= Gu(x)

and in a similar manner

Gg(x) = Gr(x).

by definition of Gf
by the induction

hypothesis
by definition of Gr
by the induction

hypothesis
by definition of Gu
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Whence Gr{x) = Gu(x) = Gf(x), and our result follows
by transfinite induction.

Examples of the use of the theorem
We were led to the theorem by considering the proof

that Gr = Gu where Gr and Gu are the specific functions
denned by equations (12) and (3) (proof B). In this
particular case x is a triplet {N, M, A) and we have

u(x) = {N, *M, H(oM, A)} and r(x) = {8N, M, A)

and obviously
u.rx = r.ux.

Corresponding to equations (20) we have the definitions

Gf{x) = [N = M -* A;;H(N, [8N = M^ A;;Gf(8x)])]

and

Gg(x) =

[N= M- •A;;[N= H(aM, A);;H(N, Gg(8x))]

Using equations (5) and simple properties of con-
ditional expressions we see that these are really the same
definition. Whence Gf(x) = Gg(x) and by our theorem
Gu(x) = Gr{x).

The theorem, as we have stated it, cannot be used in
proof D, the function g defined by equation (9) occurs
twice in the conditional expression, each time with
a different "decrementing" function. However, the
theorem can be extended to this situation as follows.

In place of equations (17) assume our functions Gu
and Gr are defined by equations of the form

Gu{x) = Eu{Gu{ux\ Gu{ul) . . . Gu(u$), x)
Gr(x) = £r(Cr(ri), Gr(rx), . . . Gr(fx\ x).

The first equation defines Gu at x in terms of Gu at
all the points {ux . . . ify. At each of these points we
may choose to use further either the definition of Gu or
the definition of Gr, or to do no further expansion.
This will give a new enlarged set of points and we may
continue this process. Similarly we could start with the
definition of Gr. If we can find two such sequences of
definitions of sets of points, both ending with the same
final set of points, then we can define two new functions
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