An analysis, both theoretical and by simulation,

of a time-shared computer system

By 1. P. Penny*

The complexity of operation in a computer system makes difficult the task of examining its
behaviour theoretically. In a study made here of a time-shared computer system, the author
shows, however, that a fairly simple theoretical analysis can be particularly valuable as an adjunct

to a simulation study.

1. Purpose

Before a time-shared computer system is constructed,
the designer should have the answers to a number of
questions. He should know, for example:

(i) the extent of the improvement likely to be gained
by time-sharing,
(ii) the factors which will limit the degree of improve-
ment,
(i) the effects on the degree of improvement of any
modifications which are seen to be feasible.

In practice, the answers to these questions, if found at
all, are usually found by field testing when the time-
shared system is actually in operation.

The improvement in processing capacity gained by
time-sharing between a number of programs depends on
many complex factors: for example, the average demand
and pattern of demand for time by each program, the
combinations in which programs happen to be run, and
the procedure used for time-sharing. Though simple
enough as conceived initially, the time-sharing procedure
itself may become quite involved. Its detailed develop-
ment and practical effects are subject to many limita-
tions of the computer configuration and the soft-ware
used.

The number and complexity of the factors involved
make it impossible to obtain highly accurate results by
theoretical analysis. Accurate results are particularly
necessary if the effects of minor modifications to the
time-sharing procedure are to be evaluated. One is
therefore virtually compelled to undertake a computer
simulation study to obtain all the information that is
needed.

If a simulation study must be made, it might be argued
that the need for any theoretical calculations disappears.
The chief aim in the paper is to show that a theoretical
study, particularly if made in conjunction with a simu-
lation study, can be extremely worthwhile. A theoretical
analysis can:

(i) give valuable preliminary information which may
be used to determine the scope of the proposed
system,

(ii) reduce the quantity of work in the simulation
study by making it possible to extrapolate fairly

* C.S.I.R.O. Computing Research Section, Canberra, Australia.

extensively from the results of a very few simu-
lations,

(ii1) suggest strategies, to be checked by simulation,
which may be followed toincrease the efficiency
of the system.

These points will be illustrated by an analysis of a specific
type of time-shared system. Upper and lower limits
will be found for the “improvement factor”, a measure
of the increase in processing capacity to be gained through
time-sharing. These limits are expressed as functions
of parameters which may be estimated for a particular
computer and work-load.

2. The model

The author developed and brought into operation a
multi-program system for the low-cost computer,
CIRRUS (Penny and Pearcey, 1962; Penny, 1963). The
analysis made here is directed towards CIRRUS, but
should be to some extent applicable for other systems
which, like CIRRUS, use only one level of storage.
Designers of time-shared systems have perhaps more
often used a second level of storage, usually a disc file
or drums. However, really large core stores of as many
as half-a-million words are now becoming available at
not excessive costs. The simplicity and inherent effi-
ciency of the system which uses only one level of storage
could well attract more designers to this configuration.

In the type of system under discussion, operations
within any one program are usually performed in an
order which is unchanged from execution without time-
sharing. This characteristic, which greatly simplifies
the task of analysis, distinguishes the one-level from the
two-level store system. In Atlas (e.g. Kilburn et al,
1961), an example of the latter class of system, infor-
mation from stow peripherals is fed through core to the
backing store in advance of its being required by the
program or programs using processor time. Informa-
tion to be output is also transferred to the backing
store when it is produced at a rate faster than that at
which it can be handled.

The aim in building the CIRRUS system was that the
computer be made “to behave as a set of separate and
independent computers” (Penny and Pearcey, 1962).

¥202 Iudy 61 uo 1senb Aq £¢1L81e/cS/L/6/21011He/|ulwoo/wod dnoolwapede//:sdpy woly papeojumo(q

Time-shared computer system

The work-load is supplied through “‘operating stations”,
each equipped with a fast paper-tape reader and punch,
an operator’s keyboard and a monitor typewriter. These
stations are at present identical, but this feature is not
a pre-requisite for the validity of the analysis. Programs
held in the 32,000-word store “‘compete” for processor
time. The present system allows for three stations. The
results of the analysis made here could be used to
determine, amongst other things, the economics of
providing more storage and peripheral units to allow for
a greater number of programs.

CIRRUS is perhaps unusual in at least one respect.
The 3,000-0dd instructions constituting the compiler are,
together with standard routines such as those for input
and output, stored permanently near the end of the store.
A technique of “parametric addressing” (Penny and
Pearcey, 1962) allows these instructions to be used inde-
pendently by separate programs. This technique appears
to give routines the property of “re-entrance” as pro-
posed by Radin and Rogoway (1965). As a result,
compilation of one program can take place simul-
taneously with compilation or execution of others.

The operation of a program from any given station
therefore parallels its operation in the system not time-
shared, except that processor time is needed before com-
pilation begins and after execution terminates for “space
(i.e. store)-sharing” decisions. During operation, of
course, the program may be delayed when processor
time cannot be made available, and some time is also
lost in making time-sharing decisions. The effect of
both space- and time-sharing ‘“overhead” is allowed
for in the analysis.

The number of programs which can be held in store
is obviously variable. To allow for the effects of storage
limitations in the analysis, one would have to know the
distribution of storage requirements by programs in the
work-load and the correlation of program size with
running time. There is probably also a significant corre-
lation between program size and the proportion of pro-
cessor time used, since programs of many instructions
may have relatively less input and output than smaller
programs. None of these factors is easy to estimate.

In making the analysis, it is assumed that the number
of programs held in store remains constant during pro-
cessing of the work-load. It cannot therefore be said
that the quantity of work done by the time-shared system
would exceed by some definite factor that done without
time-sharing. If one wishes to find some definite value
which takes account of store limitations, the answer is
better sought through simulation. Even then the diffi-
culties are substantial. A sample of programs must be
examined to build a ““work-load” for the simulator.
To account fully for all the relevant factors, the number
of programs examined must be very large and the
examination made in considerable detail.

However, one of the chief aims of any preliminary
study must be to obtain information which will help in
determining the size of the projected system. Such
decisions must be based on a comparison of the improve-

54

ment to be gained in a system of some given size against
the cost of constructing the system. If one knows the
improvement gained through sharing between n pro-
grams, say, and the improvement for n + 1 programs, a
decision can be made on whether a proportionate
increase in storage and peripheral equipment is justified.

3. The analysis

Consider first the situation where the processor is not
time-shared. We can take 7, the total time required to
process a given work-load, as a quantitative measure of
the “work™ in the work-load. 7 can be divided into
alternate segments T}, ¢;, where

T;is a period during which the processor is used
continuously,

t; is a period, following T;, in which the processor is
not used.

The degree of processor utilization is therefore:
zT; T,
D= =4
Z (T: + 1) T

Delays by the computer operator contribute to ¢,
and therefore to 7. Operator delays in single-program
operation must certainly be taken into account in any
comparison against multi-program operation.

Suppose that, by time-sharing, the time required to
process the work-load becomes 7°. The capacity of the
system to process the work-load has therefore been
improved by a factor I, where

I:

NN

For example, if the time required is halved, processing
capacity has obviously been doubled.

Suppose also that work is supplied to the processor
in n streams Sy, . .. S,, and that each stream, if allowed
exclusive access to the processor, would use a proportion

d;, j=1,...n, of total processor time. An obvious
upper limit of I is therefore
IU = n.
Now,
2(Ti+1) 2T+ 2T, D
I = i — i L4 — _1_‘
T XT; T D

where Dy = processor utilization when the processor is
time-shared.
I !
V=D
is another upper limit for 7. In practice, processor time
available for the work-load is reduced by ‘“overhead”,
or time spent in implementing time-shared operation.
The computer structure, time-sharing method, com-
position of the work-load and the distribution of the
work-load between streams will all affect overhead time.

(3.1)

Hence,

¥202 Iudy 61 uo 1senb Aq £¢1L81e/cS/L/6/21011He/|ulwoo/wod dnoolwapede//:sdpy woly papeojumo(q

Time-shared computer system

For a particular multiprogram computer and work-load,
let us express overhead as &(n), where ¢(n) is a
proportion of total processor time. (3.1) can therefore
be replaced by

_ 11— ¢

Iy D 3.2)
In establishing a lower limit for the improvement

factor, let us assume that there are two constraints:

(1) time is shared according to a fixed order of
priorities between streams, work in stream §;
taking precedence over work in stream S;, ,,

(2) there can be concurrency of useful work not
requiring processor time with work requiring
time only where the former takes place in the higher
priority stream.

Manipulation of priorities can be a valuable tool to
increase the efficiency of the system. One of the objec-
tives in simulation will be to test the effect of different
methods of priority variation. However, the method of
priority adjustment may become quite complicated. In
the theoretical analysis, it is preferable therefore to
assume that a straightforward and constant order of
priority exists.

Work not requiring processor time will often be done
while the processor is busy with work in a higher priority
stream. It must be remembered that periods spent
waiting for a peripheral unit or spent in operator delays
contribute to the quantity of useful “work”. Work not
requiring processor time will continue in a low priority
stream whenever the period of work has begun before
control must be returned to a higher priority stream.
The frequency and extent of this overlapping is difficult
to predict theoretically. It is therefore preferable to
ignore the possibility and to assume that the effect of
this concurrency can be measured by simulation.

The imposition of each of the two constraints would
reduce the quantity of work done. Any value found for
the improvement factor in a system where the constraints
hold can therefore be taken as a lower limit for the
improvement factor in a more general case.

Let us suppose that the two constraints hold, and
consider first an hypothetical case where there is no
overhead time. In stream S, alone, a quantity of
work will be processed equal to that done without time-
sharing. Furthermore, a proportion (1 — d;) of total
time will be shared between work in lower-priority
streams. Where j > 1, each stream will have highest
priority use of a proportion

i—1
k=1
of total time, and will leave a proportion

Jj
I (1 - dk)’
k=1
again of total time, free for lower priority streams.

E

The improvement factor for this hypothetical system
in which ¢(n) is zero is
n j—1
Ijsm=o=1+2% T (1 —dy.
Jj=2 k=1
Let the time required to process the work-load in this

system be T,

. T
Le. IH, =0 = F;

In practice, some overhead time must certainly be spent.
Of the time T required to process the work-load, let 8
be the actual time spent in overhead.

Now T"< T+ 8.

Inequality, rather than equality, will hold if any time
spent in overhead coincides with a period in which the
work in no stream would have used the processor.

-0 T

2z

Therefore, Iy, 00 > T T
.]
1.C. IH'd,(,,);éo - (1 — T;) . IH,) =0-
T
Now, T > W S0

nf
T, =0 > (1 - 3?) - I, 4 =o0- (3.3)

The right-hand side of (3.3) is a lower limit for the
improvement factor in the restricted case where the two
constraints stated hold. It is therefore a lower limit for
the general case. Thus, the improvement factor lies in
the range:

(1- "—ﬁ){l +.§;2 :r;[:(l ~dk)}< I< Min{n, 1—_7;‘3@}.

=

L— () 1—6T 1—86T
Now, D = D o
Therefore,
g no-l 1—/T
(1-% {1 T (! —dk)}< I< Min{n,—/}.
T j=2 k=1 D

Overhead 8 can be considered in two separate parts:

(1) space-sharing overhead, processor time spent in
assigning storage and peripheral units,

(2) time-sharing overhead, processor time spent in
switching from one activity to another.

It is probable that, for any multiprogram computer, the
quantity of overhead time in processing a given work-
load can be expressed in terms of the number of pro-
grams and quantity of input and output in the work-load.
Suppose that, for each program to be processed, a period
s such that

H LS5

is needed for space-sharing decisions. Suppose also

¥202 Iudy 61 uo 1senb Aq £¢1L81e/cS/L/6/21011He/|ulwoo/wod dnoolwapede//:sdpy woly papeojumo(q

Time-shared computer system

that, for each unit* of information to be transferred, a
period ¢ such that
H<t< b

is spent in time-sharing decisions.

If, in the work-load there are p programs and m units
of information to be transferred, then 8 lies in the range

ps; +mt, < 0 < ps, + mt,.

Hence,
n(ps, + mt;) Wl
(1 -T2 2T () +3 @ ~dy))
1 P + mt,
-
< I'< Min n, ———p—| (3.4

For a particular computer and time-sharing procedure,
ty, 13, 5, and s, should be calculable with reasonable
accuracy. For a given work-load run on this computer,
T, m and p are constants and estimates for them should
also be calculable. Finding an estimate for D, the over-
all degree of processor utilization by the work-load,
should also be feasible. All that is needed, then, is to
relate the values of d, to D. Iy and I, would then be
expressed in terms of only one variable n, the number of
separate streams.

4. Estimating overhead

The most important result to be found is the improve-
ment in processing rate to be gained by time-sharing
between a given number of programs. Processor utiliza-
tion by the work-load without time-sharing (D) is the
most important factor. The calculation is very much
simplified if an estimate can be made for a range of 6/T.
In a system using only one level of storage, the quantity
of time used in overhead should be reasonably small, but
will certainly be significant.

Reasonable estimates of ranges for s and ¢ can probably
be made once the proposed system has been outlined.
Let us take CIRRUS as a specific case. The computer
is of course now in operation. The quantities of time
needed for space- and time-sharing decisions are known,
and agree fairly closely with early predictions. It has
been found that less than one second per program is
required for space-sharing decisions,

ie. 0L s 1.

The time-sharing system requires a switch between
programs for each character of information transferred
with any peripheral, unless the transfer can be made
immediately. For calculating time-sharing overhead, a
single character is conveniently taken as the ‘““unit” of
information transferred. The period of time lost as
time-sharing overhead for each character is as little as
12 psec if the character can be transferred immediately—
only an availability check is made. If the character

* Any convenient quantity.

56

cannot be transferred, as much as 184 usec* can be lost.
This is the maximum time for two program switches;
first to a lower priority program and then followed by a
later return when the transfer can be made.

Therefore 12 psec << ¢ < 184 pusec.

To estimate p, m and T, something must be known
about the likely work-load. For use in his simulation
study, the author selected at random a sample of ten
programs from those programs being run on the two
computers (an IBM1620 and an IBM7090) then avail-
able to programmers in the University of Adelaide.
These programs were examined in logically separable
sections (and frequently with data array sizes reduced)
under a tracing program on the IBM1620. This program
gave a count of the (1620) instructions executed between
successive branches to the input-output subroutine,
together with a statement of the quantity of information
involved in the input or output operation.

By considering in detail a number of small subroutines,
an estimate was made for a conversion factor by which
each instruction count should be multiplied to find the
appropriate period of continuous processor usage in
CIRRUS. The behaviour of CIRRUS during sequences
of input and output with each peripheral unit was also
predicted. Hence, it was possible to express for the
simulator each of the ten programs as a sequence of
alternate periods T, t;, of processor use and waiting
time, as suggested at the beginning of Section 3.

If each program were to be compiled once and
assembled once from object code, this ‘“‘work-load”
would have the following parameters:

p=20
m = 3105 characters
T = 3-103 seconds

0-001 < 6/T < 0-027.
Suppose that, generally,

0< 6/T<0-03.
Substituting in (3.4), we obtain

Therefore,

n j—1 1
a- o-o3n)(1 +,§2 ;gl(l - dk)) <I< Min{n, 5}
@.1)

5. Information obtainable from the analysis

Before useful results can be obtained, it is necessary
to relate the di to D. Again taking CIRRUS as a parti-
cular case, assume that each ‘“‘stream” as specified in
Section 3 is constituted of the work supplied through a
single station. Suppose also that the work-load is
very large and is divided randomly between stations.
Since the stations are identical, d; — D for all i. If the

* The maximum period of time lost depends on the number of
programs operating. The period quoted is the maximum when

there are four programs, four being the greatest number considered
here.

¥202 Iudy 61 uo 1senb Aq £¢1L81e/cS/L/6/21011He/|ulwoo/wod dnoolwapede//:sdpy woly papeojumo(q

Time-shared computer system

N=2
® SIMULATION RESULTS
— — PREDICTED

—_——

‘

1 — T T
13 -2 4 .
D
Fig. 1.—Upper and lower limits I,;, I;, for the ‘‘improvement
factor’’ I, plotted against processor utilization D:
Two-program case

&
&
o

work-load were not divided at random, it can be assumed
that the “scheduling” carried out would be aimed at
improving the rate at which the work-load was processed.
D can therefore, in this case, be substituted for all d; in
the expression for 7 in (3.4).

Then,

(1—0-03n)(1 +'iz:l(1 —DY)<I< Min{n, %} (5.1)

From (5.1) upper and lower limits of 7 can be calculated
for particular valuesof Dand n. Joand Jyfor0 <D <1
are plotted in Figs. 1, 2 and 3 for n = 2, 3 and 4, respect-
ively.

It is clear that a reasonable estimate must be made of
the degree to which the processor would be utilized
without time-sharing. If the sample set of ten programs
prepared for the simulation study were each run twice,
being compiled once and assembled once, D for this
“work-load” would be

x T

D= all programs each program
(T; +1)

2 2
818 (sec)

all programs each program
T 2792 (sec)

This estimate would neglect the effect of delays by the
computer operator between or during program. If, for
example, the mean idle time per program were ¢ seconds,
20 ¢t should be added to the denominator in the left-
hand side of (5.2). If # were 10 seconds, processor utiliza-
tion would be

0-29. (5.2)

D =10-27.

The number of programs in this sample is admittedly
small. However, it is reasonable to say that processor
utilization during operation without time-sharing would
be fairly low, and quite possibly 0-3 or less. The
improvement gained by time-sharing is therefore certainly
significant.

N=3

® SIMULATION RESULTS
— = PREDICTED |

1

T
(] .2 .4 N3 .8 1-0

Fig. 2.—Upper and lower limits I;;, I;, for the ‘‘improvement
factor®’ I, plotted against processor utilization D:

Three-program case

Fig. 3.—Upper and lower limits I, I}, for the “‘improvement
factor’’ I, plotted against processor utilization D:

Four-program case

ifn=2D=027,
1-64< I<2,
ifn=23,D=0-27,
2-06< I< 3,
and ifn=4D=0-27,
2-33<I< 3 7.

For example,
(from 5.2)

It is interesting to compare the order of the improve-
ment to be gained through time-sharing against the
improvement obtainable by increasing processor speed,

¥202 Iudy 61 uo 1senb Aq £¢1L81e/cS/L/6/21011He/|ulwoo/wod dnoolwapede//:sdpy woly papeojumo(q

Time-shared computer system

If the speed of the processor used as a basis for com-
parison were increased by some factor k, processing
capacity would be improved by a factor

1
~ (I =D)+Djk

For example, if D = 0-27 as estimated from the sample
set of programs, increasing only processor speed could
improve processing capacity of the system by, at most,
1-37 times,

The expression for the lower limit of the improvement
factor in (3.4) suggests that higher priority should be
given to activities requiring a lower proportion of pro-
cessor time. That this should be done is generally
accepted to be worthwhile. In the first simulation run,
however, no attempt was made to assess priorities on
this basis. A case of 3 programs was simulated, using
the sample set of programs (each being run at least twice)
as a work-load. For n= 3, D =0-29 (no operator
delays assumed), 7 = 2-40 was found, compared to the
expected range of 2-09 < 7 < 3. Since the first con-
straint of Section 3 still applied, it was assumed that the
absence of the second constraint caused the increase in
the value of 7 beyond the lower limit found theoretically.

To increase efficiency in practice, two steps can be
taken. First, jobs may be scheduled to be run in suitable
combinations and second, priorities may be adjusted
along the lines suggested in the preceding paragraph.

Elaborate scheduling procedures are important parts
of some systems (for example, the Honeywell-800
(Honeywell, 1961) and IBM Stretch (Codd, 1960)
systems). The aim in these cases is to associate jobs
whose requirements, both in space and time, are comple-
mentary. For a formal scheduling procedure to be
effective, however, the storage requirement, execution
time and processor utilization of each program must be
known fairly accurately. Hence, scheduling is of most
value when the work-load contains a high proportion of
recurring jobs.

Where a machine is used for “open-shop” scientific
computing, the work-load varies greatly from day to day.
Many jobs are checked-out and then run only once or
twice before being discarded. Scheduling for CIRRUS
in particular would have been further complicated by the
fact that each operator should preferably be able to
ignore completely the existence of others. Hence, the
potential benefits of any scheduling system had to be
carefully balanced against the problems of implementing
1t.

It is obvious from Figs. 1, 2 and 3 that, unless the
value of D is high, the rate of processing will be very
much greater when # = 2 than when n = 1, and much
greater again when n = 3 rather than 2, or 4 rather than
3. Certainly, any scheduling procedure which materially
increases the average number of programs held in store
would be worthwhile. The value of I(2-40) found in the
first simulation run where 7 = 3 was appreciably below
the upper limit (3-0). However, no attempt at priority
adjustment had been made.

IV

3

58

Any method for priority adjustment should be “auto-
matic”, that is, no information should be demanded
from either the programmer or operator. A scheme
was developed whereby the multiprogram control sofit-
ware could reassess priorities whenever the nature of
the activity on any station altered. It was assumed from
(3.4) that the aim should be to minimize processor
utilization by the work constituting the highest priority
stream. It was found to be important not only to give
higher priority during sequences of input or output but
also to make choices between programs engaged in
sequences of computation.

Three further simulation runs were made for the same
initial conditions. The results of each run confirmed
the view that any measure which reduced d, relative 1o
d,, and d, relative to dy would increase the value found
for . The best result obtained (n = 3, D = 0-29) was

I=2-6l.

So far, only the particular case where n = 3, D = 0-29
has been discussed. Each simulation run required a
considerable amount of computer time—almost an hour
each on the IBM7090. The value of the theoretical
analysis in reducing the quantity of simulation now
becomes apparent. By altering certain parameters, the
work-load for the simulator was given an apparent pro-
cessor utilization value D in the vicinity of 0-5. With
only two simulation results for the three-program case, a
complete curve could be drawn to predict values of I
for all D (Fig. 2). Three runs were made for the two-
program case and the curve for Jagainst D drawn (Fig. 1).
Although no runs were made for the four-program case,
the shape of the curve for I against D can readily be
foreseen.

These simulation results confirm the view that the
average number of programs in store must be kept as
high as possible. However, scheduling or selection of
programs on any other basis, such as the association of
jobs of low and high demand for time, can quite possibly
be neglected. Except under certain conditions (for
example, where n = 2, D for the work-load = 0-5), no
great improvement would be gained. It must be remem-
bered that the curves drawn for Iy in Figs. 1, 2 and 3
allow for no overhead time at all. The author therefore
suggested the scheduling procedure which will now be
briefly described. The procedure is aimed solely at
making effective use of store space in a system having
independent consoles and used in an “open-shop”
environment.

For the type of scheduling procedure put forward by
Codd (1960), both the storage requirement and execution
time of each program must be known quite accurately.
The storage requirement can be estimated fairly accurately
in advance or found exactly when the program is com-
piled. Furthermore, the storage requirement will remain
constant unless the program is altered. On the other
hand, execution time is difficult to predict and may vary
over successive runs with different sets of data. If the

¥202 Iudy 61 uo 1senb Aq £¢1L81e/cS/L/6/21011He/|ulwoo/wod dnoolwapede//:sdpy woly papeojumo(q

Time-shared computer system

forecast of execution time were underestimated by a
factor of 2 (as would frequently happen in an “open-
shop” environment), a schedule prepared by the method
suggested by Codd could become meaningless.

If the scheduling procedure is to be effective for the
work-load expected in an “open-shop” installation, the
procedure must be “dynamic”. In other words, selection
of the appropriate job should be made only when a new
job is needed, and made according to the current con-
ditions. Two obvious requirements, therefore, are that
the estimated (or known) storage requirement of each
job be stated, and that the quantity of vacant store space
be specified both when a job ends or when requested by an
operator. Each operator must also be able to reject any
job which, when loading is attempted, proves too large.
All these facilities are simple to provide.

The author anticipated that at least one of the CIRRUS
operating stations would be manned by a full-time
operator who would attempt to maintain a steady flow
of production jobs to the machine. The on-line user
will of course choose any job which happens to be con-
venient and which fits into the store. The full-time
operator should, however, accept as his task the most
efficient use of store. If, for example, there are programs
in store for all stations but his own, he should choose
from those programs available the largest which can be
fitted into store. On the other hand, if there are no
programs in store, he might choose a quite small pro-
gram, thereby leaving as much space vacant as possible
for other users.

6. Conclusions

The example given illustrates in particular the
advantages of carrying out both a theoretical and a
simulation study concurrently. The sample set of pro-
grams prepared for the simulation study yielded values
of p, m and T which enabled an estimate to be made
for the “overhead” term /7. The value for processor
utilization D found for this sample gave some indication
of the area in which Iy and I, should be evaluated.
Hence, even before attempting simulation, it was pos-

References

sible to decide whether a system of a particular size
could be justified.

The value of the theoretical analysis in enabling com-
plete curves to be drawn after very few simulation
runs is self-evident. The search for an appropriate
method of priority adjustment was based on attempts
to increase f; in expression (3.4) which was derived by
theoretical analysis.

The information yielded on the question of scheduling
was particularly valuable because both the structure of
the computer and the nature of its expected work-load
raised obstacles against scheduting. The scheduling, or
more properly “selection”, procedure suggested, although
primitive by comparison with procedures in some other
systems, represents a reasonable compromise for this
difficult environment.

The author is well aware that the time-shared computer
will not be operated in the same manner as the computer
not time-shared. On-line users in particular can be
expected to “waste” a good deal of time. However,
the important point is that, if the improvement factor
for a three-station system is 261 (as it is when D = 0-29),
one has while three programs can be held in store the
processing capacity and operating convenience of three
separate computers, each working at a rate 0-87 times
as fast as the single computer not time-shared. One
can certainly then feel that each of these “separate
computers” might be used in a much more relaxed
fashion—this is after all one of the chief aims in time-
sharing.

The results obtained and the conclusions drawn here
apply directly only for a system in which the work-load
is supplied through separate stations. The results may
have some validity, however, for other systems which,
although not having individual stations, make use of
only one level of storage. The ‘‘streams” into which
the work-load is considered to be divided need not
emanate from quite separate sources. The crucial
factor for the success of the analysis is that the execution
of operations within each program must occur in the
same order that they would in a computer which is not
time-shared.

Copp, E. F. (1960). ‘““Multiprogram Scheduling,” Comm. Assoc. Comp. Mach., Vol. 3, p. 347 (Part 1), p. 413 (Part II).

KiLsurN, T., HowartH, D. 1. H.,, Pavyng, R. B, and Summer, F, H. (1961).

System,” The Computer Journal, Vol. 4, p. 222.

“The Manchester University Atlas Operating

Minneapolis-Honeywell Regulator Company (1961). Executive System Manual for the Honeywell 800,
Penny, J, P. (1963). “The CIRRUS Multiprogram System,” Proe. Aust. Comp. Conf., Melbourne, March 1963.

PeENNY, J. P., and PeaRrcey, T. (1962).
Assoc. Comp. Mach., Vol. 5, p. 473.

RabpiN, G., and RoGcoway, H. P. (1965).
Vol. 8, p. 9.

59

“Use of Multiprogramming in the Design of a Low-cost Digital Computer,” Comm,

“NPL: Highlights of a New Programming Language,” Comm. Assoc. Comp. Mach.,

¥202 Iudy 61 uo 1senb Aq £¢1L81e/cS/L/6/21011He/|ulwoo/wod dnoolwapede//:sdpy woly papeojumo(q

