
Note on an alternate method for the computation of rotational
energy levels of rigid asymmetric top molecules

By Eric L. Jones*

This note briefly describes a technique for the solution of the general eigenvalue problem and its
application to a recent publication on the computation of rotational energy levels. Whereas the
previous method involved computation of the eigenvalues of the pertinent tridiagonal arrays via
a four-stage, double-precision process combining three iteration techniques, it is demonstrated
that similar results may be obtained through the single stage procedure of this note using only
single-precision arithmetic.

Recently, a method was given for the computation of
reduced energy levels of rigid asymmetric top molecules
(Rachman, 1965). This procedure involved the expan-
sion of a secular determinant of a tridiagonal submatrix
yielding a polynomial in the eigenvalue parameter.
This polynomial, after a necessary scaling to prevent
overflow, was then solved using a combination of
Muller's, regula falsi, and dichotomy procedures. The
paper pointed out the presence of rounding and con-
vergence problems which require that his procedure be
carried out in double-precision. It is the purpose of this
note to call attention to the existence (Barlow and Jones,
1966) of a method for the solution of general eigenvalue
problems which is readily used for the special case here.
The example given by Rachman has been solved and
presented here to demonstrate the effectiveness of the
method.

Method
The problem presented by Rachman is one of

the class of ordinary eigenvalue problems of the form

(A — IX)x = O, where A is a nonsymmetric matrix, /
the identity matrix, and A is the eigenvalue parameter.
This is a special case of the general eigenvalue problem

H{\)x = O,

where H is an array in which A may appear in any or all
of the elements. Eigenvalues, values of A such that
nonvanishing solutions x exist, are solutions of

F(X) = |//(A)| = 0; (1)

hence any method for solving for zeros of functions
may be applied using for functional values the computed
determinant values for each selected A.

It has been found (Barlow and Jones, 1965) that a
quite successful general method for solution of problems
given by (1) is obtained by considering A to be a complex
variable and applying the recursive formula

(2)
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where

This recursion, formally the extension of the secant
method to the complex plane (the complex extension is
especially advantageous when a real equation possesses
complex roots), has superlinear convergence properties
in addition to retaining the original accuracy of the
undisturbed array. Additional information including
convergence, accelerating procedures for multiple roots,
removal of effects of previously found zeros and
numerical details are given in the aforementioned paper.

Table 1
Energy levels for / = 25 submatrix 0+

ENERGY LEVEL

25,-25
253-23
255.2,
257. ,9

259-J7
2 5 , , . , 5
25,3-,3
2 5 , 5 - , ,

25,7-9
25,9.7
25 2 1 . 5

2 5 2 3 . 3

25 2 5 - ,

REDUCED LEVEL
TRACE

2,904-62087

RACHMAN
(IN KMHZ)

590-78784
670-95029
737-23383
796-13159
868-91611
962-60090

1,076-40023
1,209-82522
1,362-66840
1,534-82845
1,726-25069
1,936-90344
2,166-76724

2,904-62070

PRESENT METHOD
(IN KMHZ)

590-78851
670-95061
737-23380
796-13142
868-91595
962-60081

1,076-40014
1,209-82517
1,362-66836
1,534-82844
1,726-25069
1,936-90342
2,166-76725

2,904-62086
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Rotational energy levels

Discussion and results
Several points should now be made in connection with

the problem in question. First, the reduction of the
determinantal equation to an explicit polynomial is not
necessary and, indeed, leads to a more ill-conditioned
problem by the reduction to a fewer number of coef-
ficients (from the array to the polynomial), and introduces
possible inaccuracy problems. Scaling problems, magni-
fied by a data-condensation process, may be handled
easily in the original array if, in fact, such difficulties
exist initially. Although the computations for the
results below were computed using complex arithmetic
(in an existing IBM 7044 computer program), the same
results could have been obtained for this case with real
variables since no complex conjugate roots are present
to establish symmetry problems in applying the real
secant method. The values of the determinant were
obtained using elimination methods, again due to the
usage of a general-purpose program, whereas the
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inclusion of an initial reduction for Hyman's method is
helpful in solving ordinary eigenvalue problems with this
method (note, however, that this initial reduction also
reduces the number of coefficients for the problem).

Using this method the following results are obtained
and appended to Rachman's table for the parameters
and matrix given in his paper.

The data in the last column of Table 1 were computed
in single-precision arithmetic (36 bits, 27 for mantissa)
with no preconditioning nor scaling of the array. Total
computation time was approximately 30 seconds on the
IBM 7044. It should be noted that the trace (as
Rachman points out, not a sufficient accuracy test) as
calculated here is in excellent agreement with the true
value; we also add that the nine-digit numbers given in
the table were obtained in converting eight-digit reduced
eigenvalues to the tabled values, and the ninth digit is
retained only to aid in immediate comparison to previous
data.

Correspondence

To the Editor,
The Computer Journal.

Timetabling and scheduling problems
Sir,
Some of the difficulties associated with computer application
to general class timetables and scheduling are well known,
and more aspects have recently appeared in an airline study
which support Elizabeth Barraclough's comments (this
Journal, Vol. 8, p. 136) that the choice for a best method for
compiling timetables seems to lie between a theoretical and a
manual method. The need she mentions for some para-
meters of the input data related to the "degree of success" of
the timetable is also supported. Apart from this the study
has a cautionary bearing on the type of linear programming
analysis used by Dr. R. E. Miller {Domestic Airline Efficiency
—An Application of Linear Programming, M.I.T. Press 1963).

In a scheduling and timetabling study made for the recent
introduction of Boeing 727 aircraft into Australian domestic
airlines it was required to schedule initially two 727 aircraft
(and later three), between five capital cities in Australia
daily under the following conditions:

(i) Transcontinental flight Sydney-Perth via Adelaide
preferably daily;

(ii) Daily return Sydney-Brisbane, Sydney-Adelaide;
(iii) No positioning (empty) flights allowed and one air-

craft to end at Sydney and one at Melbourne each
evening;

(iv) First flights to be between Melbourne and Sydney
and not earlier than 7.45 a.m.;

(v) No flights later than 9.00 p.m. and allowance made
for time differences coast to coast;

(vi) Allowance for ground time at airports;
(vii) Allowance for all routing patterns and possible

connecting flights of the 727 aircraft to achieve the
specified inter-capital service;

(viii) What effect of time for some alternate daylight
servicing of aircraft;

(ix) Maximum flights between the major business centres
Melbourne and Sydney;

(x) Annual flying hour usage for each aircraft to be a
maximum up to 3,750 hours.

Manual trial and error methods were started by experienced
airline operations staff while the computer method was
developed. In the latter, a binary notation of routing was
used using a series of binary S's which finally allowed 16
routing possibilities to be designated by variables which had
to be either zero or unity.

The single case of 8, will illustrate the method which led
into integer programming formulation to cover routing
possibilities in the timetabling problem:

S, = 1 designated a return flight Sydney-Brisbane prior to
Sydney-Adelaide (direct or via Melbourne depending
on 82)

{continued on p. 77)
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