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By A. R. Curtis and M. J. D. Powell*

Given a function fix) and a range of the variable, S, the general minimax approximation problem
is to determine that function of a class, C, which is the best approximation to /(.v) in the sense
that the maximum error of the approximation as x ranges over S is minimized. We specialize
to the usual case in which the functions of C are determined by n real parameters, Xi, X2,. . . Xn,
and we use the notation <f>(x,\u\2, • • •, Xn)eC Most algorithms for calculating the required function
<f>(x, X) depend on the maximum error of the minimax approximation occurring for (n + 1 )
distinct values of the variable x. In particular exchange algorithms seek these values iteratively,
usually calculating on each iteration a best approximation over in + 1) distinct points of
S, xo, xi,..., xn say. The value of the minimax error over the point set, Y](xo, *i» • • •, xn), is
regarded as a function of the points; so are {L,(xo, * I , . . . , xn) which are the values of X,,
t = 1, 2 , . . . , n, yielding i). In this paper we present theorems on the first and second derivatives
of T) and (J.,. They provide much insight into the convergence of exchange algorithms.

1. Introduction
The theorems presented are stated in Section 5 and dis-
cussed in Section 6. The preceding sections necessarily
include a synopsis of the basis of exchange algorithms.

2. Notation
/(JC) is the function to be approximated, S is the range

of the variable x, and C is the class of approximating
functions. It is assumed that the functions of C are
determined by n real parameters, A,, A2,. . ., Am which
are denoted by the vector X. Therefore the functions of
C are called <f(x, X). For example if the class of approxi-
mating functions is the class of polynomials of degree
(n — 1), we may define

<Kx,X)= S A,*'"1. (1)

To avoid consideration of limits, a number of assump-
tions will be made. They are

(i) S is closed and compact,
(ii) f(x) is a continuous function of x,
(iii) For all real values of the parameters, <f)(x, X)eC,
(iv) The parameters are such that those which define a

minimax approximating function are necessarily
finite, and

(v) (f>(x, X) is a continuous function of x and is also
continuous in the parameters A,, A2, . . ., An.

Following the notation of Curtis and Powell (1966),
we reserve h(X) for the maximum absolute error in
approximating f(x) by (f>(x, X). The assumptions
guarantee the existence of a best approximating function,
<f>{x, X*) say, and we abbreviate h{\*) by h*. Therefore

h* = min h(X),
X

(2)

where h(k) = max \f(x) — <j>(x, X)|.
xeS

(3)

In exchange algorithms we do not calculate the
required minimax approximation over the full range of
x directly. Rathei we iterate, calculating on each iteration
an approximation over just (« + 1) distinct points of S.
It is convenient to employ Stiefel's (1959) nomenclature
and call a set of (n + 1) points, (x0, xu . . ., xn) a
reference. The approximation required by an iteration
is usually the minimax approximation over the reference,
but it may not be because we may require an approxi-
mation subject to a condition known to hold for <j)(x, X*)
being satisfied. For example, minimax rational approxi-
mations are necessarily pole-free over S (Maehly, 1963).
In any event for each reference we define pu /JL2, . . ., ixn
to be the values of the parameters A(, A2,. . ., An yielding
the required approximation, and we regard the numbers
jXj as functions of x0, xu . . ., xn. Further we define

(4)xn) = max \f(x) -
x = Xi

3. The basis of exchange algorithms
The basis of exchange algorithms is that

ri(x0, xu . . .,xn) < h*, (5)

because the minimax error over a part of S cannot
exceed the minimax error over the whole. Further it is
assumed that for some choice of x0, xu . . ., xn, y attains
the value h*. Hence the minimization problem defined
by (2) is replaced by the maximization problem defined
by (5). It is of interest that in the event that <f>(x, X)
depends linearly on the parameters and S is composed
of a finite number of discrete points this reformulation is
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equivalent to a duality theorem in linear programming
(Stiefel, 1960).

Of course there are many classes C for which equality
in (5) is not attained (Rice, 1960), so the applications of
exchange algorithms are limited. However, they have a
great advantage over minimizing A(X) directly. It is
that for a given reference x0, xlt. .., xn the dependence
of T) on f(x) is contained in just the (n + 1) function
values/(xo)JXxi),. . .,j\xn) while, for given A,, A2,. . . , An,
the calculation of A(X) requires consideration of/(x) over
the whole of the range of the approximation. Usually
this would be balanced by the greater difficulty of
adjusting the variables of (5), but we shall prove that
the derivatives of rj(x0, x 1 ; . . ., xn) have properties that
may be exploited.

In common with all exchange algorithms known to
the authors, we make the restrictive assumption that for
each choice of reference the error of the required approxi-
mation <f>(x, \L) is 7j at each of the points x0, x , , . . ., xn.
Thus we have

\f(xi)-</>(xhlL)\ = r1, « = 0 , 1 , . . . , » . (6)

(6) is used to calculate the required numbers, /x,, fx2, • • •,
/xn and 77, there being (n + 1) equations in (« + 1)
unknowns. Generally (6) has many solutions, but
usually the equations may be written without modulus
signs, known multipliers st = + 1 being introduced in
the right-hand sides. Hence (6) becomes

/(x,) - <£(x,-, (A) = s,-q; i = 0, 1,. . ., n. (7)
Even (7) may have many solutions, and in the case of
rational approximation this reintroduces the require-
ment that the approximation shall be pole-free (Maehly,
1963).

4. Assumptions made in proving the theorems
It is assumed that /(x) and <f>{x, X) are differentiate

functions of x and X.
It is assumed that rj(x0, x , , . . . , xn) and /x,(x0, x , , . . . , xn),

/ = 1,2,...,«, are differentiable functions of xo,Xi, . . . ,xn.
It is assumed that x0, x , , . . ., xn are such that the

(n + 1) x (n + 1) matrix

(8)

is non-singular.
We require the inverse of D, and use the notation Etj

for its elements, which are, of course, functions of the
reference. Further we write o-, = EOh and the final
assumption is that the numbers a, are non-zero. This
is a sufficient condition for (6) to hold (Curtis and
Powell, 1966).

There is no doubt that in many applications of
algorithms based on the theorems it will not be possible
to guarantee the assumptions. In particular for some
choices of reference one a, may be zero. This should
not deter one from trying an exchange algorithm, as
such a reference may not occur.

5. The theorems
For the sake of brevity we use primes to denote

differentiation with respect to the variable x, for example

(9)

Theorem 1

and

5 5 - ^ - • X r * (10)

^ = E.jifXxj) - 4'ixj, \L)},t= 1,2,.. ., n. (11)

Proof. Differentiating (7) with respect to xt,

si ^ = S/,{/'(*,) - 4>'(xj, |i)} - 2 *£DIP. (12)
OXj p = l OXj

Multiplying by at and summing over i, equation (10)
results; multiplying by Eti and summing over i gives (11).

Theorem 2

Ir,
If the reference is such that ^— = 0, then

*X

= 0 , / = 1, 2 , . . ., n. (13)

Proof This is a simple consequence of (10), (11) and
the assumption that a} =# 0.

Theorem 3

If the reference is such that:— = 0, then

and

- +"(xj, = 1, 2,

(14)

„. (15)

Proof. Differentiating (12) with respect to x;,

If -r—= 0, the second and fourth terms on the right-
OXj

hand side of (16) are zero because of Theorem 2.
Multiplying (16) by CT, and summing over / gives (14),
while multiplying by Eti and summing over / gives (15).
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Theorem 4
()7l 7)77

If the reference is such that ^— = r— = 0,j * k,
, OX; 0Xtthen ' K

= 0

and
7ixk7)Xj

!- = 0,t= 1 , 2 , . . . , « .

(17)

(18)

Proof. Differentiating (12) with respect to x^ and using

p=\
(19)

The first term on the right-hand side of (19) is zero if
k #= j because there is no explicit dependence on xk.
(17) and (18) then follow as in Theorem 3.

6. Discussion of the theorems
Theorem 1 relates the derivatives, with respect to Xj,

of both T](X0, xu . . ., xn) and fj.,, to the derivative of the
error function of the approximation </>(x, yi) at x = Xj.

The obvious deduction may be made that if x = Xj is a
turning point of the error function these derivatives are
zero.

Theorems 2, 3 and 4 provide insight into the ultimate
convergence of exchange algorithms because, in the
reference that maximizes -q(x0, xu . . ., xn), the first
partial derivatives of 77 are zero with respect to those xt

that are interior points of S. Those points of the
reference that are boundary points, for instance the end-
points of an interval, are usually recognized early in the
calculation.

A special case of Theorem 2 has been stated by
Murnaghan and Wrench (1959). It is easy to visualize
why relatively inaccurate values of the required
x0, x,, . . ., xn can furnish a good approximation to the
required function.

Theorem 3 provides the most significant term in the
Taylor series expansion of rj(x0, xx,. . ., xn) and
[t.(x0, X,, . . . , xn) about the required solution.

Theorem 4 is the most important since a corollary of
it is that if TJ(X0, XU . . ., xn) were maximized by the
simplest of methods, namely that of varying the points
of the reference one at a time, the ultimate convergence
rate would be quadratic. Curtis and Frank (1959) have
experienced this fast convergence in calculating best
polynomial approximations, and it was their paper that
motivated us to postulate and prove the general theorems.
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Notice: Future publication of Algorithms Supplement

Considerable interest has been shown in the Algorithms
Supplement, which has been published in recent issues of
The Computer Bulletin. As a result it has been decided to
transfer the Supplement to this Journal, and the next Supple-
ment will appear in the August issue.

A. S. Radford, who has been the editor of the Supplement

since its foundation, has given up the work upon accepting
a position in Canada. The new editor is

P. Hammersley
Northampton College of Advanced Technology
St. John Street, London E C 1.

All correspondence concerning the Supplement should be
addressed to him.
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