
A Runge-Kutta method for the numerical solution of the
Goursat problem in hyperbolic partial differential equations
By J. T. Day*

A Runge-Kutta type method is developed for the numerical solution of second order hyperbolic
partial differential equations. Numerical examples of the method are given.

In this paper we consider a numerical method for the
solution of the Goursat problem

"xy = A.X, y, U, Ux, Uy)

u(x, 0) = a(x), W(0, y) =

0< x < a, 0 <y <b.
) , a(0) = r(0)

(0
The numerical solution of (1) over a set D{(x, y):

0 < x < a, 0 < y < b} is to be carried out in a stepwise
manner over a square mesh on D. The object of our
method is to calculate u, ux, uy at (x0 + ft, y0 + ft), given
u, ux, uy at (x0, Jo), (*o + h, y0), (x0, y0 + ft).

In this discussion it is assumed that a solution to the
above problem exists and is unique (Kamke, 1947 or
Jeffrey and Taniuti, 1964) and that / a, and r are suffi-
ciently regular for the subsequent derivations to hold
true. It is also assumed that ux(0, y) and uy(x, 0) have
been calculated along the initial data lines. Techniques
on how this can be done are discussed by Moore (1961).

For convenience of notation the following symbolism
is used. We denote the value of the function/evaluated
at the point (x0, y0) by/,. In a similar manner we use
f2 and / 3 for the values at the respective points
(x0 + ft, j 0 ) , (x0, y0 + ft).

To derive the method under consideration the
differential equation is converted into a system of integral
equations. After integration we have

«Oo +h,yo+h) — u(x0 + h, y0) + u(x0, y0 + ft)

J Ax, y , u, ux,uy)dx dy (2)

(3)

«i*o + K jo + h) = ux(x0 + ft, j 0) + | / ( x 0 + ft,

«(x0 + h, y), ux(x0 + ft, y), uy(x0 + ft, y))dy

uy(x0 + h, jo + ft) = w,(x0, Jo + ft) + f f(x, j 0 + ft,
Jxo

u{x, Jo + h), ujx, jo + ft), uy[x, jo + ft))dx. (4)

If we approximate the double integral in (2) by means
of the trapezoidal rule for double integrals (Runge-
Willers, 1915)

| J °F(x, y)dx dy = h2[F(x0, j 0 ) + F(x0 + ft, j 0 )
XQ XQ

+ F(x0, yo+h)+ F(x0 + ft, j 0 + h)]/4

- h*[Fxx{t, j 0 ) + Fxx(t, yQ+ft)+ Fyy(x0, T,)

+ f^(x0 + ft, r?)]/24 + ft*[Fxxyy(t, A)]/144 (5)

(here x0 < t < x0 + h, j 0 < TJ < j 0 + ft,

we obtain
«(*o + h, jo + h) = M(X0 + ft, jo) + K(X0, jo + ft)
- u(x0, Jo) + h2[fi + / 2 + / 3 +/(x0 + h, jo + h,
u(x0 + ft, j 0 + ft), ux(x0 + ft, j 0 + ft),
uy(.x0 + ft, jo + fi))]/4 — h*[fyy{x0 + ft, 7],

M(XO + ft, 7]), UX(XO + ft, 7)), Uy(x0 + ft, 7]))

Xo, 7], «(x0, 7]), Ux{x0, 7j), Uy(x0, 7]))

t, Jo, u(t, j 0 ) , ux(t, j0), uy(t, j0)) +fxx(t, jo + ft,
«(', Jo + ^), ux{t, j 0 + /;), w/r, j 0 + h))]/24
+ h6[fxxyy(t, A, u(t, A), W;c(/, A), uy(t, A))]/144. (6)

Here

x0 < t < x0 + ft, j 0 < •»; < y0 + A, j 0 < A < jo + h.

The reader should note that in the right-hand side of (6)
M, ux, uy are not known. Approximate values for these
quantities are obtained in the succeeding discussion.

By Taylor expansions the following estimate for u at
(x0 + ft, jo + h) can be obtained:

+ h, y0 + h) = u(x0

- u{x0, Jo) + h2ft +
h, y0) u{x0, y0 + h)

+ 6{h, y0 + dlh)
uxyy(x0 y0

Here 0 < 0, < 1.

As a useful notation, let up be defined as the quantity

"P = "(*o + h, Jo) + w(x0, Jo + h) — M(X0, JO) + /i2/,.

In order to obtain estimates for ux and uy at
(x0 + ft, jo + h) we first approximate (3) and (4) by( ()
the trapezoidal rule to obtain equations (7) and (8).
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Hyperbolic partial differential equations

ux(x0 +h,yo+h) = ux{x0 + h, j0)

+ h[fi + /(*o +h,yo+ h, u(x0 + h, y0 + h), ux(x0 + h, y0 + h), uy(x0 + h, y0

- T[P +h,yo (7)

(HereO < 63 < 1.)

uy(x0 + h, y0 + h) = uy(x0, y0 + h)

+f(x0 + h, y0 + h, u(x0 + h, y0 + h), ux(x0 + h, y0 + h), uy(x0 + h, y0

h, y0 + h, u(x0 + 64h, yo\ ux{x0 + 64h, y0), uy(x0 + 64h
1

, yo))\. (8)

Estimates for ux and uy at (x0 + h, y0 + h) occurring
in the right-hand side of (7) and (8) are obtained by the
Taylor expansions

+ h, Jo + h) = ux(x0 + h, y0) + hf2

h2

(9)

uy(x0 +h,yo+h) = uy(x0, y0 + h)

+ + h), (10)

where 0 < 95 < 1, 0 < 06 < 1.

Let uxp = ux(x0 + h, y0) + hf2,

uyp = uy(x0, y0 + h) + hf3.

Approximate values ux, uy for ux and uy at (x0 + h,
y0 + h) can be obtained by substituting up, uxp, uyp into
(7) and (8) and disregarding the truncation error term
of (7) and (8), i.e.

Ux = ux(x0 + h, y0) + h[f2 +f(x0 + h, y0 + h,
uP,uxp,uyp)]l2 (11)

Uy = uy{x0, y0 + h) + h[f3 +f(xQ + h, y0 + h,

"P, uxp, uyp)]/2. (12)

It can be shown that

ux{x0 + h, y0 + h) — ux

= — J2 ^ylif^o +h,yQ + 63h,

U(XQ + h, Jo + 63ft), ux(x0 + h, j 0 + 03h),

uy(x0 +h,yo + 63h))j + 24I ^-",,/JCo + >̂

Jo + + + Qeh, Jo +

(13)

where the partial derivatives of/with respect to ux and
uy are to be evaluated at (x0 + h, y0 + h).

(Here 0 < d4 < 1.)

A similar estimate for uy(x0 + h, y0 + h) — uy can
be obtained.

Replacing u, ux, uy at (x0 + h, y0 + h) in (6) by the
respective quantities up, ux, uy and disregarding the error
term in (6) gives us an approximate value u4 for
u(x0 + h,y0 + h).

M4 = u{x0 + h, y0) + u(y0, x0 + h) — u(x0, y0)
+ h2[f{ + / 2 + / 3 +f(x0 +h,yo+ h, up, ux, uy)]/4.

(14)

It can be shown that

u(x0 + h, y0 + h) — u4

= ~ h4[fyy +fxx\X0,J\2 + O(hs). (15)

In practice the writer has found that recalculation of
the estimates for ux and uy at (x0 + h, y0 + h) by the
formulae

"* = ux(xo + h, Jo) + h[fi +f(x0 + h,
y0 + h, u4, ux, uy))l2 (16)

uy = uy(x0, yo+h) + h[f3 +f(x0 + h,
jo + h, u4, ux, uy)]/2 (17)

appears to give better results than using (11) and (12).
The above discussion may appear somewhat compli-

cated; however, on a large-scale digital computer its
implementation offers few difficulties. The procedure is
summarized here:

Calculate f\,fi,h—"vvill be stored from previous work.
Calculate up
Calculate uxp and uyp
Calculate i?r and uv

Calculate iix, u_, from (16) and (17)
Proceed to the next step.

A FORTRAN program for the method under con-
sideration was written (CDC 1604 computer), and the
following results were obtained for three computational
examples.

In the examples considered below, "error," is to be
understood to mean the relative error, i.e.
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Hyperbolic partial differential equations

error = |(true value = approximate value)/true value|.

The first example is the differential equation uxy = e2u;
with initial conditions

u(x, 0) = x/2 - log (1 + O

"(0, y) = j / 2 - log (1 + e»).

The solution of this problem is

u{x, y) = (x+ y)/2 - log (e* + e").

Taking /i as 0 • 05 errors for u were obtained as shown
in Table 1.

The second example is the differential equation
uxy = ux • uy\u with initial data taken along the lines
x = 1 and y = 1; i.e.

u(x, 1) = e<*+»sin(l)

The solution of this problem is

u{x, y) = e<-x+» sin(y).

Taking h as 0-05 the errors shown in Table 2 were
obtained.

Example three is uxy = (ux + uy + w)/3 with initial
data taken along the line x — 0, j> = 0, i.e.

w(x, 0) = e*, w(0, y) = ey.

The solution of this problem is

u(x, y) = e<-x+y\

Taking h as 0-05 the errors shown in Table 3 were
obtained.

Table 1
Errors*

x \y

1 0
2 0
3 0
4 0
4-5

1 0

7-29
9-70
6-49
4-03
3-37

2 0

9-70
29-45
34-11
25-87
22-24

3 0

6-49
3411
80-38
95 07
88-90

4 0

4 03
25-87
95-07

211-36
246-82

* All errors in the table are multiplied by 10 ~5.

Table 2
Errors*

'X
1-2
1-4
1-6
1-8
2 0

1-2

5-46
11-43
17-70
24-22
30-95

1-4

20-08
44-27
69-30
95-57

122-88

1-6

38-18
81-72

128-16
176-94
227-61

1-8

53-56
114-91
180-20
248-67
319-68

2 0

64-95
139-41
218-37
300-96
386-44

* All errors in the table are multiplied by 10 ~5.

Thus the method appears to give satisfactory results
in those examples discussed here. The method given here
is somewhat simpler and easier to program than the
method given by Moore (1961) or a method due to the
writer (Day, 1963) for the less general equation
uxy = f(x, y, u).

The writer acknowledges the kind cooperation of
Professor Dr. Eduard Stiefel for his part in making
available the computing facility of the Swiss Federal
Institute of Technology (ETH), and the Office of Naval
Research (USA) for financial support while the paper
was being prepared.

Table 3
Errors*

* \ 7

1-0
2-0
3 0
4 0

1 0

20-37
31-54
37-84
41-47

2 0

31-54
51-68
64-87
73-44

3 0

37-84
64-81
84-28
98-31

4 0

41-47
73-44
98-31

117-55

All errors in the table are multiplied by 10 ~5.
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