
The partitioning of network equations for block iteration

By B. A. Carre*

This paper presents a graph-theoretic approach to the problem of finding best orderings and
partitionings of systems of equations to be solved by block iterative methods, and describes a
method for obtaining convenient partitionings of sparse disorderly systems such as commonly
arise in network problems.

1. Introduction

In solving sets of linear algebraic equations by block
iterative methods such as the Successive Block Over-
Relaxation (S.B.O.R.) method, the manner in which the
equations are ordered and partitioned is vitally important.
For many problems good ordering and partitioning
schemes are well known; for instance, in finite-difference
analogues of partial differential equations the sets of
equations are usually associated with a rectangular mesh,
in which case it is natural to consider ordering and
partitioning by mesh rows or columns, which leads to
Successive Line Over-Relaxation (S.L.O.R.) methods.
However, there are many important engineering prob-
lems for which block iterative methods can be particularly
advantageous, but which give rise to sets of equations in
which the disposition of non-zero coefficients is very
disorderly, making the choice of orderings and partition-
ings extremely difficult. Such problems arise in the
analysis of structural frameworks, and distribution net-
works such as electrical power systems, for which the
sets of equations can be quite large (involving up to
1,000 variables), very sparse, and somewhat ill-
conditioned.

In attempting to make good choices of partitions for
disorderly sets of equations, it is useful to study the
structures of the sets of equations and the associated
partitioning problems from a topological standpoint.
This can lead to simple graphical techniques for parti-
tioning which can often be applied manually, and which
can be particularly useful since information describing
such problems is often supplied in a convenient graphical
form—for instance in the form of a line diagram of a
structural framework, or a circuit diagram of an elec-
trical network. For large and complicated problems it
is often profitable to use topological methods on a digital
computer to obtain partitions.

Certain topological aspects of the solution of dis-
orderly sets of equations have already received much
attention, but interest has mainly been shown in direct
methods, for instance in finding orderings which involve
least arithmetical operations in using Gaussian elimina-
tion (Parter, 1961; Sato and Tinney, 1963), or which
give matrices having minimum band-width or other
convenient forms (Livesley, 1960; Sato and Tinney,
1963; Alway and Martin, 1965). Kron's tearing methods
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(Kron, 1963) are, of course, also very relevant. How-
ever, although these techniques have substantially
reduced the amount of computation involved, direct
methods are still unsatisfactory for many large systems.

This paper is concerned with topological aspects of
block iterative methods, particularly in their application
to sparse disorderly systems. In Section 2, the general
topological features of block iterative methods are sum-
marized; much of this section is based on previous work
of Parter (1961) and Varga (1962), but the results are
presented in a form particularly convenient in dealing
with symmetric matrices. Section 3 describes graphical
criteria by means of which different partitioning arrange-
ments can be compared and indicates the value of par-
titioning into chains and trees; Section 4 describes an
algorithm for partitioning sparse systems into a suitably
small number of trees, manually and on a digital com-
puter. In Section 5, the problem of finding the minimum
number of tree partitions for a planar graph is examined
in terms of its dual graph, and in the case of a two-tree
partitioning is shown to be equivalent to the Hamilton
circuit or Travelling Salesman problem. In Section 6
some topological aspects of the solution of finite-
difference analogues of partial differential equations are
briefly discussed. There are some confusing variations
in the graph-theoretic terminology used by different
authors; in this paper an attempt has been made to
follow the nomenclature of Ore (1962, 1963).

2. Preliminary definitions

We consider a set of n equations:

Ax = b (1)

where A = {ah]) is a symmetric positive definite
irreducible matrix.

We form a graph G(A) of the matrix A as follows:
with each index i of A (or each corresponding variable
Xj) we associate a vertex i on G(A), and with each pair
of non-zero coefficients a-uj and aJti we associate one
edge (i,j) which connects the vertices i and / Fig. 1
and Fig. 2 show two matrices (with non-zero coefficients
denoted by crosses) and their associated graphs, as
defined above.

It is possible to construct graphs to represent matrices
in different ways (Harary, 1962; Parter, 1961; Varga,
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Fig. 1

1962), but the form of graph described above is very
convenient for present purposes. It can be seen from
Fig. 2 that the graph of a set of elliptic finite-difference
equations obtained with a five-point formula corresponds
to the rectangular mesh used (excluding boundary nodes
at which the function denoted by x is specified); similarly,
the graph of an admittance matrix of an electrical net-
work corresponds to its circuit diagram, and the graph
of a stiffness matrix of a structural framework cor-
responds to its line diagram.

It is important to note that a graph G(A) is invariant
under simultaneous permutations of rows and columns
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of A. Also, the fact that A is irreducible implies that
G(A) is connected (Varga, 1962), i.e. every vertex is
connected to every other vertex by a series of edges
such that consecutive edges have a common end point.
(We shall call such a series of edges a sequence of edges,
and call the number of edges in a sequence its length;
a sequence in which no edge appears more than once
will be called a path, and a closed path which does not
pass through any particular vertex more than once will
be called a circuit.)

In block iterative methods we partition the set of
variables xt (i = 1, 2, . . ., ri) into a number of disjoint
subsets, and repeatedly obtain direct solutions for each
subset in turn. The study of such operations in topo-
logical terms involves the examination of certain
subgraphs of G(A), which correspond to submatrices of
A. We define a subgraph of a graph G as a graph all
of whose edges and vertices are contained in G. (A
subgraph may consists of a single edge or vertex.) A
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type of subgraph of particular interest is a section graph:
if V is the set of vertices of G, and D is a subset of V,
then the section graph G{D) denned by D is the sub-
graph whose vertex set is D and whose edges are all
those edges of G which connect vertices in D. (When
D = V, the section graph G(D) is G itself.)

To consider a particular example, we partition the
matrix of Fig. 2 in the manner shown in Fig. 3(a), which
is a form of partitioning used in S.L.O.R. (Varga, 1962)
and we represent the partitioned matrix by:

A =
0

0
(2)

This partitioning corresponds to the partitioning of
the set of vertices 1-12 of G(A) into three subsets:
1-4, 5-8, 9-12. For these three subsets of vertices,
G{A) has three section graphs, drawn in bold lines on
Fig. 3(6). These are the graphs G(AU1), G(A2,2), G(A33)
of the diagonal submatrices AUi, A2,2 and A3>3. Apart
from these section graphs, G(A) contains only edges, in
particular edges connecting G(AUX) to G(A2i2) and
edges connecting G(A22) to G(A3J). The edges con-

necting G(A{j) to G{A22) correspond to the coefficients
of the pair of off-diagonal submatrices AU2, and A2 {

and the edges connecting G(A2,2) to G(AJ<3) correspond
to the coefficients of the pair of off-diagonal submatrices
y42i3 and Aia. In future we shall describe edges con-
necting section graphs as connecting edges, as opposed
to edges contained in section graphs.

It is often desirable to study the relative structure and
ordering of blocks, as opposed to the structure and
ordering of coefficients within blocks. For instance, to
exploit the theory of over-relaxation to the full it is
necessary (a) to determine whether a block matrix is
primitive or 2-cyclic* (Varga, 1962), and (b) to determine
whether or not an ordering of blocks is "consistent"
(Varga, 1962). For these purposes it is simplest to
construct a graph G\A) of the same form as G(A), but
in which the vertices and edges correspond to the sub-
matrices of A, rather than its coefficients. The graph
G'(A) can be constructed directly from G(A): it is a
homomorphic image of G(A), in which each vertex of
G'{A) represents a section graph of G(A), and each edge
connecting two vertices on G'{A) represents the set of
connecting edges of G(A) which connect the correspond-
ing pair of section graphs. The homomorphic image
G'{A) of the graph G(A) of Fig. 3(b) is shown in Fig. 3(c),
in which the numbering of vertices corresponds to the
numbering of diagonal blocks in equation 2.

(a) To determine whether a block matrix is primitive
or 2-cyclic we can use a method based on that of Varga
(1962). We consider, for each vertex of G'(A) in turn,
the lengths of all sequences which connect the vertex to
itself (including two traversals of a single edge). If the
greatest common divisor of the lengths of all closed
sequences on G'{A) is p, then for p = 1 the graph G'(A)
and the corresponding block matrix are primitive; if
p = 2, G'(A) and the corresponding block matrix are
2-cyclic, i.e. they satisfy Young's "Property A" (Young,
1954).

It is important to note that on any graph G'(A) every
vertex possesses at least one closed sequence of length 2,
namely the length of a closed sequence involving two
traversals of a single edge. It follows that if G\A)
contains only sequences of even length it is 2-cyclic, and
if it contains any sequences of odd length it is primitive.

It is also useful to note that any graph G'(A) contains
closed sequences of odd length if and only if it contains
one or more circuits of odd length; this result makes it
easy to determine by inspection whether a graph is
primitive or 2-cyclic. The graphs shown in Fig. 4(a)
and Fig. 4(6) are primitive and 2-cyclic respectively.

(b) To determine whether or not an ordering of blocks
and corresponding numbering of vertices on a 2-cyclic
graph are consistent, we can again use a method based
on that of Varga (1962). We direct every edge of G'(A)
towards its higher-numbered endpoint (see Fig. 4(c) and
Fig. 4(d)). Then an ordering is consistent if and only if
every circuit of G'{A) has zero circulation, i.e. if the

• Only unsymmetric matrices can be p-cyclic with p > 2 (Tee,
1964).
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Fig. 4

numbers of arrows pointing in each direction round the
circuit are equal. (Fig. 4(c) and Fig. A(d) show con-
sistent and inconsistent orderings, respectively.) Clearly,
if G'(A) contains no circuits, every possible ordering is
consistent. To obtain a consistent ordering for a 2-cyclic
graph which does contain circuits, the fact that every
circuit is of even length is useful, for this makes it
possible to map the graph onto a rectangular grid; if
we then scan successive rows of the grid in the same
direction, and number vertices consecutively as we
encounter them, the resulting ordering will be consistent.

3. Some desirable features of partitioning schemes
For reasons which are explained later, the methods

described in this paper do not utilize the concepts of
"Property A" and consistent ordering. Instead we
consider other features of partitioning arrangements
which significantly affect the efficiency of block iterative
methods in respect of (a) the amount of work involved
in performing each iteration, and (b) the convergence
rate of the iterative process.

(a) Each iteration involves the direct solution of the
sets of equations associated with the diagonal blocks of
A, and therefore it is desirable for these blocks to have
structures for which particularly efficient elimination and
back-substitution techniques can be devised. From this
point of view, the forms of section graphs which yield
narrow band matrices, in which the bands are full, are
particularly appropriate; the simplest of these forms is
a chain, which corresponds to a tri-diagonal matrix (see

Fig. 5.—Regular icosahedron

Fig. 3). Another convenient type of section graph is a
tree, i.e. a graph without circuits; optimal elimination
schemes for this and other structures have been described
by Parter (1961).

(b) The effects on convergence rates of different types
of partitioning arrangements are difficult to elucidate,
particularly for disorderly systems, because the numerical
values of the coefficients as well as their dispositions are
important. However, the following considerations are
usually relevant in choosing partitions:

(i) Rates of convergence usually increase significantly
as the number of partitions and corresponding
section graphs is reduced. (Conditions under
which rates of convergence necessarily increase are
described by Varga (1962).)

(ii) Rates of convergence are affected by diagonal
dominance, and improve as the coupling between
section graphs is weakened. If all off-diagonal
coefficients have the same numerical value, then
section graphs should be chosen in such a way
that the number of connecting edges is as small
as possible. When off-diagonal coefficients have
different numerical values, it is usually desirable
for strong edges (i.e. edges associated with relatively
large coefficients) to be contained in section
graphs, and for connecting edges to be weak.

The choice of structures for section graphs usually
involves a compromise, for by increasing the com-
plexity of their structures, it is possible to reduce the
number of section graphs and the coupling between
them. Also, the most convenient form of section graph
for any particular problem depends very much on the
sparseness and regularity of its graph. For instance, for
graphs with regular structures the minimum possible
number of chain partitions is often surprisingly small, as
can be seen in Figs. 5-7, which can each be partitioned
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into two section graphs of chain form. Fig. 5 shows a
two-chain partitioning of the graph formed by the edges
and corners of a regular icosahedron; Fig. 6 and Fig. 7
show alternatives to the "line" methods of partitioning
elliptic finite-difference analogues obtained with a five-
point formula—the arrangement of Fig. 6 can be modi-
fied to produce a two-block method for any rectangular
region. For more disorderly systems, more complex
forms of section graphs are usually desirable, as the
exclusive use of chains tends to produce a large number
of very small partitions.

For very sparse and disorderly graphs such as com-
monly arise in engineering network problems, the
author has found that section graphs of tree form are
particularly appropriate. (Fig. 8 and Fig. 9 show tree
partitions of a small electrical distribution network, and
of a structural framework.) We have already referred
to the fact that the corresponding sets of equations can
be solved very efficiently; an additional benefit is that
for sparse disorderly systems the minimum number of
tree partitions increases only very slowly with the size
of graph (a graph having several hundred vertices can
often be partitioned into as few as seven or eight trees);
hence the number of connecting edges will be reasonably
small.* Also, for any problem there are usually many
partitioning arrangements for which the number of trees
and connecting edges are minimal, and it is often easy
to choose a particular arrangement for which the con-
necting edges are relatively weak.

The author has developed a computer program which
partitions networks into section graphs of tree form, and
then uses the partitions to obtain solutions by S.B.O.R.

* An indication of the number of connecting edges is given by
the fact that for a planar graph of/faces, partitioned into / trees,
the total number of connecting edges is / -I- / — 2.

Fig. 7

For typical problems the time required per iteration is
only about 20% greater than for S.O.R., and con-
vergence rates are considerably better, usually by a
factor of three or four, and sometimes by a factor of
ten. The separation between the dominant and second
largest eigenvalues of the S.B.O.R. operator is usually
considerably larger than for S.O.R., which greatly
facilitates the determination of optimum accelerating
factors (Carre, 1961). The procedure used to obtain
partitions, which is described in the next section, only
takes an amount of computer time equivalent to that
required for five S.O.R. iterations.

4. A procedure for partitioning into trees
We have referred to the fact that block matrices which

are 2-cyclic are ideally suited to over-relaxation, and
therefore, in choosing tree partitions for a particular
matrix, we might first try to determine whether or not
any such partitioning yields a 2-cyclic block matrix; if
so, we might then seek the minimal number of trees for
which the 2-cyclic condition is satisfied. For very simple
graphs such partitionings can often be obtained by
inspection, but experience indicates that in general the
imposition of the 2-cyclic condition severely complicates
the partitioning problem. In this paper, therefore, we
consider only the minimization of the number of trees,
i.e. we shall consider the following problem:

Given a connected graph G, we require a decomposi-
tion of its vertex set V into the minimal number k of dis-
joint subsets Au A2, • • • Ak, whereAlvA2u ... oAk = V,
such that the section graph G(A?) associated with each
subset Aj is a tree.

Alternatively, the problem may be expressed in terms
of cut-sets (a cut-set is a set of edges of a connected
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Fig. 8.—Distribution network

Fig. 9.—Structural framework

graph G such that the removal of these edges separates
G into two disjoint sub-graphs):

Given a connected graph G, we require a union of
cut-sets which cuts G into the minimal number of trees.

In principle, therefore, one method of solving this
problem would be to determine all cut-sets of G, by
enumerating all its spanning trees (a spanning tree of a
graph G is a connected subgraph of G which contains
all its vertices, but no circuits).* For the types of
networks with which we are concerned, however, the
number of different cut-sets and spanning trees is of the
order of millions, t and therefore their enumeration
would not be practical as a means of obtaining partitions.
Since the object of tree partitioning is to obtain a fast
method of solving sets of equations, only relatively fast
and simple partitioning techniques are appropriate, and
this would seem to preclude the use of any techniques
involving the identification of circuits or cut-sets.

An alternative method has therefore been developed
in which graph characteristics which are more easily
discernible, by inspection or by digital computation, are
used to obtain good if not necessarily optimal parti-
tionings. This method, in which the choice of tree to
which each vertex is assigned depends on the nature of
the interconnections between the vertex and its neigh-
bours, often yields optimal solutions, and requires a
relatively small amount of computer time.

The method involves a succession of elementary
assignment operations in each of which a particular edge
and its endpoints are assigned to a tree. The simplest
way of applying the method to a particular graph G is
by means of a corresponding succession of contractions
of G, in each of which the assignment of an edge and
its endpoints to a tree is represented by the contraction
of the edge and the merging of its endpoints. Ultimately,
when all assignments and corresponding contractions
have been performed, the vertices remaining in the con-
tracted graph represent the chosen section graphs, and
the remaining edges are the connecting edges, i.e. the
succession of contractions ultimately yields a homo-
morphic image of G in which each vertex corresponds
to a chosen section graph of G. We shall now show
how a succession of contractions can be performed to
produce section graphs of tree form, and then consider
the best choice of successive contractions from the point
of view of minimization of the number of trees.

4.1. The contraction method

Let us consider the contraction of a particular graph—
that of Fig. 10(a). Initially, we can obviously assign
any edge of the graph and its endpoints to a tree. Let
us arbitrarily choose the edge (1,2) and perform the
corresponding contraction; the contracted graph is shown

* A method of enumerating all spanning trees is described by
Hakimi and Green (1964), and Branin (1962) describes the
enumeration of basic circuits and cut-sets corresponding to a
particular spanning tree.

t An indication of the number is given by the fact that a graph
of n vertices with one edge connecting"each pair has w—2 spanning
trees.
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in Fig. 10(6) and the corresponding partially formed
section graph is shown in Fig. 10(c). We can then still
assign any other edge to a tree, and we might choose
the edge (4, 5), in which case the contracted graph
becomes that of Fig. 10(<i) with the partially formed
section graphs shown in Fig. 10(e). This contraction
leads to a situation not previously encountered, in that
two vertices of the contracted graph are now connected
by a pair of edges. (In future, when a pair of vertices
is connected by more than one edge, we shall describe
the set of edges which connect them as a multiple edge,
or m-edge; and correspondingly, when a pair of vertices
is connected by one edge only, we may describe the edge
as a single edge, or s-edge.)

An m-edge and its endpoints constitute at least one
circuit (the number of circuits depending on the multi-
plicity of the m-edge) which indicates that some or all
of the edges contained in the section graphs represented
by the endpoints, together with the m-edge, constitute at
least one circuit. Therefore the section graphs repre-
sented by the endpoints of an m-edge cannot belong to
the same circuit-free section graph, and so we prohibit
the contraction of m-edges: to obtain circuit-free section
graphs, a graph may be contracted only by a succession
of contractions of s-edges.

To return to the graph of Fig. 10, the m-edge of
Fig. \0{d) indicates that the vertices 3, 4, and 5 cannot
all belong to the same section graph. However, the
contracted graph still has two j-edges, one representing
(2, 3) and the other representing (2, 4), and either of
these can be contracted. If we contract (2, 3) we obtain
the graphs of Figs. 10(/) and lOfe). Since Fig. 10(/)

3,4

Fig. 11

has no .s-edge it is completely contracted, i.e. no further
contractions are possible; the graphs of Figs. 10(/) and
10(g) therefore represent the final partitioning arrange-
ment, with two trees and three connecting edges.

On any completely contracted graph, the replacement
of each m-edge by an .s-edge yields a homomorphic image
graph G' of the type defined in Section 2.

4.2. The choice of successive contractions
If we perform a succession of contractions of arbi-

trarily chosen j-edges, we ultimately obtain a contracted
graph consisting either of a single vertex (if G is a tree),
or of a set of vertices connected by m-edges only (if G
contains circuits). However, if G contains circuits, the
final number of vertices and corresponding partitions
will not necessarily be minimal, but will depend on
which particular j-edges are chosen for successive con-
tractions. For example, if after we obtained the con-
tracted graph of Fig. 10(6) we had contracted the edge
(3, 4) we would have immediately obtained the three-
tree partitioning arrangement of Fig. 11, which contains
one more tree and one more connecting edge than the
final arrangement of Fig. 10.

To overcome this difficulty, rules have been formu-
lated which define conditions under which the contraction
of a particular edge is optimal, in the sense that at least
one optimal partitioning in which the edge belongs to a
tree can be proved to exist. Furthermore, it follows
from the arguments of Section 4.3 that such a con-
traction may be performed at any time without prejudice
to the feasibility of subsequent moves towards an optimal
partitioning. (We shall describe contractions performed
under these circumstances as optimal contractions, and
describe all other contractions as arbitrary contractions.)
For many practical problems it is possible to perform a
complete contraction by means of optimal contractions
only, in which case an optimal partitioning is obtained.
(The network of Fig. 8 was completely contracted in this
way.) Otherwise it is sometimes necessary to perform
some arbitrary contractions, in which case the final
partitioning may yet be optimal, but not necessarily.
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Since the simplicity of the partitioning method is
important, the usefulness of definitions of conditions
under which edge contractions are optimal depends on
the simplicity of determining whether or not the con-
ditions are satisfied. The rules below give only those
conditions for optimal contractions which can be defined
in terms of a very small amount of information per-
taining to an edge and its endpoints, in particular:

(i) the numbers of j-edges and m-edges terminating
at the endpoints, and

(ii) the number of m-neighbours common to both
endpoints.

(It will be convenient to describe the numbers of s-edges
and m-edges terminating at a particular vertex as
its s-degree and m-degree, respectively; the other
vertices connected to it by .s-edges and m-edges are its
s-neighbours and m-neighbours, respectively.)

The following contractions are always optimal,
(i) The contraction of the .s-edge connecting a vertex

of .s-degree 1 to a vertex of .s-degree 1 or 2,
irrespective of the m-degrees of either vertex,

(ii) The contraction of the .s-edge connecting a vertex
of .s-degree 1 to its ^-neighbour, irrespective of the
^-neighbour's .s-degree, provided that the vertex
has not more than one m-neighbour which is not
also an m-neighbour of the j-neighbour.

(iii) The contraction of an .s-edge connecting a vertex
of .s-degree 2 to one of its .s-neighbours, irrespec-
tive of the ^-neighbour's .s-degree, provided that
all m-neighbours of the vertex are also m-
neighbours of the ^-neighbour.

Examples of optimal contractions are the three con-
tractions of Fig. 10, the first being of type (i) and the
others being of type (iii). The contraction of Fig. 11,
in which both endpoints (3 and 4) are of .s-degree 3, is
arbitrary.

Any contraction other than those of types (i)-(iii)
cannot be proved to be optimal or otherwise without
using further information concerning the edge and its
endpoints. It seems most likely that further conditions
for optimal contractions involving only "local" in-
formation could be found, but such conditions would
necessarily be much more complicated than those
described above—probably to the point that it would
not be practical to make use of them in a partitioning
procedure.

4.3. Proofs that the contractions (i)-(iii) are optimal

(i) Let / be the vertex under consideration, S its
^-neighbour, and T the second ^-neighbour of S. In an
optimal partitioning,
either none of the m-neighbours of / belong to the same

tree as S, in which case / must belong to the tree
(for otherwise there would be one more tree than
is necessary);

or (see Fig. 12) some m-neighbours Mu M2, . . . of
i belong to the same tree as S, in which case i
belongs to a different tree and the edge (/, S) is a

Fig. 12

connecting edge. If the connecting edge (/', S) is
to be transformed into a member of a tree, all
the m-neighbours Mu M2, • . . must be removed
from the tree containing S; but this can be done
by transforming only the edge (S, T) into a con-
necting edge; and since this pair of transforma-
tions does not change the total number of
connecting edges, there is no change in the total
number of trees.

(ii) Let i be the vertex under consideration and 5 its
j-neighbour. Since no m-neighbours of S can belong to
the same tree as S, and i has not more than one m-
neighbour which is not an w-neighbour of S, we have
that in an optimal partitioning,
either none of the m-neighbours of / belong to the same

tree as S, in which case / must belong to the tree;
or one m-neighbour of i belongs to the same tree

as S. In this case, only one edge of the tree need
be transformed into a connecting edge to remove
the m-neighbour from the tree; if we then trans-
form the connecting edge (/, S) into a member of
the tree, there is no change in the total number
of trees.

(iii) Let us first consider a vertex / of .s-degree 2 and
m-degree 0, connected to its two ^-neighbours Sx and
S2 by the s-edges Ex and E2: In an optimal partitioning,
either St and S2 belong to different trees, in which case

/ must belong to one of these trees; but since
/ can belong to either tree, there must exist at
least two optimal partitionings, in one of which
Ex belongs to a tree and E2 is a connecting edge,
and in another of which E2 belongs to a tree and
Ei is a connecting edge;

or Si, S2, and / all belong to the same tree, in which
both £•, and E2 belong to the tree;

or 5 , and S2 belong to the same tree, but i belongs
to a different tree. In this case both Et and E2

are connecting edges, but then at least two other
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optimal partitionings can be obtained by trans-
forming one edge on the path joining St and S2
in their tree into a connecting edge, and trans-
forming either one of the connecting edges El
and E2 into a member of a tree.

Hence, if i has no w-neighbours, there necessarily
exists an optimal partitioning in which one or other of
the edges Et and E2, chosen arbitrarily, is a member
of a tree.

Let us now consider the contraction of / to Sl in
particular, and consider the w-neighbours of i when its
w-degree ^ 0.

If all w-neighbours of / are also w-neighbours of S1,,
then in the optimal partitionings described above, none
of the w-neighbours of i ever belong to a tree containing
5 t ; hence i can indeed belong to a tree containing Su
and so the contraction of i to Sx is still necessarily
optimal.

But if i has any w-neighbours which are not also
w-neighbours of S\, it is possible that in the originally
considered optimal partitioning, the tree containing S(
also contains w-neighbours of /'. In this case the assign-
ment of i to the tree containing 5, might involve the
transformation of at least one edge of the tree into a
connecting edge, and in some circumstances this would
result in an increase in the total number of trees.

Hence the contraction of an j-edge connecting a vertex
of s-degree 2 to one of its j-neighbours is necessarily
optimal only if all w-neighbours of the vertex are also
w-neighbours of its j-neighbour.

4.4. A systematic contraction procedure
The application of the rules described above can easily

be systematized, one simple method being as follows.
To contract a graph, we examine the s-degree of each

vertex in turn, and each time we encounter a vertex of
j-degree 1 or 2 we determine whether or not it has an
j-edge which can be optimally contracted (i.e. we
determine whether or not any contractions of the
types (i)-(iii) can be performed); if so, we immediately
perform an optimal contraction, but otherwise we do
not perform any contractions. (We shall describe this
operation on all vertices of the graph as a pass.) At
the end of the pass, we may or may not have performed
some contractions; if not, it is impossible to perform
any optimal contractions of the graph in its present
form, so we perform one arbitrary contraction. The
process of performing a pass, followed by an arbitrary
contraction if the pass has not involved any optimal
contractions, is then repeated for the partially con-
tracted graph until the contraction is complete.

Several refinements can be introduced which simplify
the use of this procedure (manually or on a computer)
and reduce the number of passes needed to complete a
partitioning. Firstly, for very sparse systems it is con-
venient to restrict the conditions under which contrac-
tions may be made during the first pass, in such a way
that contractions performed at this stage do not produce
any w-edges. Since no w-edges exist initially, we obtain

Fig. 13.—Distribution network after first pass

the following particularly simple definitions of per-
missible optimal contractions during the first pass:

(i) the contraction of the s-edge connected to a vertex
of ^-degree 1;

(ii) the contraction of an j-edge connected to a vertex
of j-degree 2, provided that its two .j-neighbours
are not connected to each other by an j-edge.

In contracting certain types of electrical networks
even this modified first pass eliminates more than half
the vertices, and since the modified first pass is much
simpler to perform than a normal pass, the time
required for a complete contraction is significantly
reduced. To make best use of the modified first pass,
the vertex scanning procedure must allow for the fact
that the contraction of an j-edge connected to a vertex
of 5-degree 1 reduces the j-degree of its ^-neighbour by 1,
and so if the ^-neighbour was previously of s-degree 3
a new permissible contraction may result. If allowance
is made for this fact the contracted graph obtained at
the end of the first pass has no vertices of ^-degree less
than 3, apart from vertices of .s-degree 2 whose
^-neighbours are connected to each other by an .y-edge.
Fig. 13 shows the result of a modified first pass over the
distribution network of Fig. 8.

Secondly, it has been found useful, in trying to mini-
mize the number of arbitrary contractions and their
adverse effects on the final number of trees, to arrange
for them all to involve the merging of one particular
vertex. If several arbitrary contractions are all per-
formed in one small region of a graph, they usually
create more w-edges and cause a greater reduction in
local s-degrees than if they are performed in different
regions.

The last refinement concerns the incorporation of
strong edges in trees and the use of weak edges as
connecting edges. If a graph originally contains any
edges with endpoints of j-degree 1, or chains of edges
which terminate at vertices of j-degree 1, all these edges
necessarily belong to trees, and the modified first pass
will contract all of them. However, most of the remain-
ing edges can become connecting edges and the choice
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of connecting edges can be improved by making use of
the fact that every first pass contraction involving a
vertex of s-degree 2 (rule (ii) above) involves a choice
between a pair of edges; the optimal contractions
described in the previous section, and arbitrary con-
tractions, usually also involve a choice of edges. All
these choices can be made quite arbitrarily, but it is
easy to make them depend on the relative strength of
the edges involved. After the first pass, the number of
such choices can be increased, without increasing the
number of trees, if any possible optimal contraction
detected on encountering a vertex of s-degree 1 is
deferred if its ^-neighbour is of s-degree 2. (For after
the first pass, a vertex of s-degree 1 may have m-
neighbours, in which case its j-edge does not necessarily
belong to a tree.)

This refinement usually leads to a good choice of
connecting edges, these often becoming the weakest
edges of a graph. For some networks the refinement
has improved convergence rates by more than 50%.

4.5. Some programming details
In programming the contraction procedure it was

found that list-processing techniques were most con-
venient and economical of storage space. For each
vertex of a graph undergoing contraction three lists are
stored, one for the names of its j-neighbours, one for
the names of its w-neighbours, and a "descriptive" list
containing such information as the j-degree and
w-degree of the vertex. These lists are initially compiled
directly from a "connection table" for the problem,
which gives for each edge the names of its endpoints
and relevant physical characteristics.

When a contraction is performed the program
designates one of the pair of merged endpoints as
temporary "leader" or representative of the resulting
section graph. The leader's lists and some neighbours'
lists are brought up to date, taking into account the
possible creation of m-edges and annihilation of s- and
w-edges as a result of the contraction, and then the
lists of the other (merged) endpoint are discarded. The
j-degrees of the leader and neighbouring vertices affected
by the contraction are then examined at once; if any of
these have been reduced to zero the corresponding
vertices represent completed section graphs, so their
lists and all other list entries describing w-edge con-
nections to them are removed (w-edge connections to a
completed tree do not affect conditions for further
optimal contractions).

When all section graphs have been completed their
vertices are re-numbered, to obtain a convenient re-
ordering of the sets of equations. To obtain a convenient
ordering within a block the program arbitrarily chooses
one vertex of its tree as last-point (Parter, 1961) and
assigns a number to it. The other vertices of the tree
are then assigned consecutively decreasing numbers in
such a way that for any pair of vertices, the length of
the path from the higher-numbered vertex to the last-
point is equal to or smaller than that from the lower-

First Pass:
Contract edges: ( 2,3 ), ( 4,6 ), ( 8,10 ), ( 11,12 ),

( 15,16 ), ( 9,16 ), ( 17,18 ), ( 18,19 ),
( 9,19 ), ( 14,22 ), ( 24,25 ), ( 24,26 ),
( 26,27 ).

Next Pass:
Contract edges: ( 5,6

( 202
( 5,6 ), ( 5,7 ), ( 8,9 ) , ( 11,13 ),
( 20,21 ), ( 21,23 ).

Next Pass:
Contract edge: ( 1,3 ).
Remove tree containing vertices: 4,5,6,7.
Contract edges: ( 3,11 ), ( 23,24 ).

Next Pass:
Contract edge: ( 11,15 ).
Remove tree containing vertices: 1,2,3,8,9,10,11,12,13,15,16,

17,18,19.
Contract edge: ( 22,23 ).
Remove tree containing vertices: 14,20,21,22,23,24,25,26,27.

Fig. 14.—Contraction of distribution network

First Pass
Next Pass
Arbitrary Contraction: ( 1,2 ).
Next Pass
Arbitrary Contraction: ( 1,4 ).
Next Pass
Arbitrary Contraction: ( 2,7 ).
Next Pass

Contract edges: ( 3,8 ), ( 5,6 ).
Next Pass
Arbitrary Contraction: ( 4,9 ).
Next Pass

Contract edges: ( 5,10 ), ( 8,12 ), (10,12 ).
Remove tree containing vertices: 3,5,6,8,10,12.
Contract edge: ( 7,11 ).
Remove tree containing vertices: 1,2,4,7,9,11.

Fig. 15.—Contraction of regular icosahedron

numbered vertex to the last-point. At the same time a
successor list as described by Parter (1961) is constructed;
this defines the structure of the tree in a form which is
particularly convenient in obtaining direct solutions of
the corresponding set of equations. The relative
ordering of blocks is arbitrary.

After re-ordering equations the program factorizes
the diagonal submatrices and then performs S.B.O.R.
iterations. The program has been used for solving net-
work problems containing more than 500 vertices.

4.6. Some typical results
The performance of the program is illustrated by

Fig. 14 and Fig. 15 which show how it obtained the
partitions of the distribution network of Fig. 8, and of
the regular icosahedron of Fig. 5.

For the distribution network, which is quite sparse,
the first pass eliminated 13 of the 27 vertices. (The first
pass contraction is shown in Fig. 13.) There were no
arbitrary contractions and so the final partitioning is
optimal.

The regular icosahedron is much less sparse than the
types of network usually encountered, and its partition-
ing involved four arbitrary contractions. Nevertheless,
an optimal solution consisting of two chains was
obtained. Several different partitionings were obtained
for this problem, by shuffling the computer input data.
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(This changes the order of entries in the vertex lists and
hence the choice of arbitrary contractions, if all edges
are of equal strength.) Although the solutions obtained
were all different, they each involved four arbitrary
contractions and consisted of two chains of equal length.

For a large rectangular mesh, the program does not
yield an optimal solution; for a mesh of 6 X 6 points it
obtains three section graphs—one chain, one tree, and
one isolated vertex.

5. Relation to the Travelling Salesman problem
For any planar graph G (i.e. a graph which can be

drawn in a plane in such a way that its edges have no
intersections except at vertices) we can construct its
dual graph G* (Fig. 16) as follows. Within each face
of G, including the infinite face, we choose a single
point; we then connect two such points by an edge if
they belong to neighbouring faces with a common
boundary edge, the new edge being drawn so that it
crosses the boundary edge but no other edges; if there
are several boundary edges common to the two faces,
we draw one new edge for each of them; also, for any
edge which is not a boundary edge (such as the edge (1,2)
in the infinite face of Fig. 16), we draw a loop which cuts
it. As examples, Fig. 16 shows the graph of Fig. 10 (in
solid lines) and its dual (in dashed lines); similarly, the
regular dodecahedron of Fig. 17 is the dual of the
regular icosahedron of Fig. 5, the numbering of faces
on Fig. 17 being consistent with the numbering of
vertices on Fig. 5.

It can be seen that to each edge of G there corresponds
one edge of G* which cuts it, and that to any section
graph (circuit-free or otherwise) of G there corresponds
one separating circuit on G* which circumscribes it,
cutting all its separating edges but no others. For any
partitioning of G into section graphs the graph composed
of the set of corresponding separating circuits is planar
and connected, having one face corresponding to each
section graph. In the particular case of a partitioning
into two section graphs the two separating circuits are
identical, giving one interior face and the infinite face.

We now determine the conditions which must apply
to a set of separating circuits if their corresponding
section graphs are to be circuit-free, to enable us to
consider the problem of finding an optimal partitioning
of G in terms of a choice of separating circuits on G*.
First, we note that the boundary edges of each face of
G constitute a circuit (such a circuit being known as a
minimal circuit), and that every circuit of G is a union
of a number of its minimal circuits. Hence a section
graph will be circuit-free if and only if its separating
circuit on G* does not circumscribe any faces of G, and
so a partitioning of G is circuit-free if and only if every
face of G is bisected by separating circuits on G*, i.e.
if an<! only if the set of corresponding separating circuits
contains every vertex of G*. Therefore the problem of
finding a circuit-free partitioning of G is equivalent to
that of finding a connected subgraph of G* which
contains all vertices of G* and in which every vertex

Fig. 16

12
Fig. 17.—Regular dodecahedron

belongs to a circuit; to obtain an optimal partitioning,
we require such a subgraph having the smallest possible
number of faces (separating circuits).

Viewed in these terms the problem is particularly
interesting in the case of a two-tree partitioning, for then
we seek a single circuit which contains every vertex of
G*. This is a Hamilton Circuit, or Travelling Salesman
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Fig. 18

Fig. 19.—Mesh and diagonal chains for biharmonic equation

route on G* (Berge, 1962; Ore, 1962). As an example,
Fig. 17 shows the Hamilton circuit corresponding to the
two-chain partitioning of Fig. 5.

Unfortunately, no general criterion has been found to
determine whether or not a graph possesses any Hamilton
circuits, and no general method, other than by trial and
error, has been found for enumerating them. Hence
we do not expect that an approach to the partitioning
problem in terms of its dual will lead to practically
useful results. On the other hand, in view of the
difficulty generally experienced in solving Travelling
Salesman problems, and the relative ease with which tree
partitions can be obtained, it seems possible that the
application of the contraction method to the duals of
Travelling Salesman problems, to obtain small sets of
separating circuits, could be helpful. Since the con-
traction method takes into account the relative strengths
of edges and there is a one-to-one correspondence
between the edges of a graph and those of its dual,
edges with relatively small associated costs can be given
preference in the formation of separating circuits. The
circuits might then be combined to yield an economical
route in a manner analogous to that used for obtaining
routes from a set of factors (Berge, 1962).

6. Finite-difference analogues of partial differential
equations

The success obtained with tree-partitioning of dis-
orderly systems naturally raises the question of the
extent to which it is possible and profitable to use more
intricate partitioning schemes than S.L.O.R. partitioning
by lines for solving orderly sets of elliptic finite-difference
equations.

For sets of equations obtained with five-point formulae
the use of intricate chains and trees often yields a
significantly smaller number of blocks than the usual
one-line method. For example, as mentioned in
Section 3, a two-chain partitioning can be found for any
rectangular region (Fig. 6); some problems with more
complex geometries can be partitioned into two trees,
the trees being of the form of interleaved combs (Fig. 18).
Finite-difference analogues of the biharmonic equation,
obtained with the usual 13-point formula, can be
partitioned into chains running diagonally across the
mesh (Fig. 19)—this form has only been applied to very
small problems, but appear to give much better con-
vergence than S.O.R.; for square regions, the chains can
be interleaved, to give a partitioning consisting of a
central vertex and four concentric spirals (Fig. 20). "f

However, although intricate partitionings such as those
of Figs, 6, 18 and 20 contain significantly fewer blocks
than one-line partitionings, the reduction in the total
number of connecting edges (which represent the coupling
between blocks) is quite insignificant, particularly for
large problems, and therefore convergence rates improve
very little. In fact, in solving square Dirichlet problems
using the types of partitions shown in Fig. 6 and Fig. 7,

t This partitioning is due to S. J. M. Denison of the Nelson
Research Laboratories, English Electric Co. Ltd.
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Fig. 20.—Mesh (rotated through 45°) and interleaved chains
for biharmonic equation

the author found that as the mesh size is reduced the
spectral radius of the S.B.O.R. operator tends asympto-
tically to that of the one-line S.L.O.R. method—for
only 10 X 10 mesh points, the spectral radii are already
the same to four significant figures. Although few
results are available for biharmonic problems the
situation with these would appear to be very similar,
the partitioning of Fig. 20 giving results comparable to
those obtained with the partitioning of Fig. 19.

The intricate partitioning arrangements nevertheless
have one advantage in that, as mentioned by Varga
(1962), the reduction in the number of blocks is found
to increase the separation between the dominant and
second largest eigenvalues of the S.B.O.R. operator,
which is important in the determination of optimum
accelerating factors. For the partitions of Fig. 6 and
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Book Review

On Retrieval System Theory, by B. C. Vickery, 1965; 191
pages. (London: Butterworths, 35s.)

The year that saw the publication of some of John Sharp's
readably useful fundamentals of information retrieval can
also add to its credit this particular second edition, and
justifiably lay claim to two important contributions to the
introduction and spread of the subject to an English audience.
The points that separate the two editions of Mr. Vickery's
work are welcome in view of the developments of the inter-
vening four years, and are responsible for a considerable
expansion, notably in the automation of storage and retrieval;
descriptor languages and "thesauri"; file organization and
coding; and the parameters, purpose and performance of
retrieval systems—particularly costs and efficiency.

If a reviewer can be permitted the space to try to give an
impression of technical knowledge, I will grasp at the only
chapter in which the author encourages opinion, within a
collection of factual scientific analyses. The 1959 Cleveland
conference, which considered the possibility of a common
language for machine searching, stimulates the author to
stress the advantages of a universal tool—primarily in uni-
fying document analysis by many abstractors throughout the
world. The U.D.C. is cited as an example of the benefits
of standardization.

There are detractors (the plural may be arrogant optimism)
who feel that the universality of U.D.C. has become a jocular
ideal because of the flexible demands imposed, and the
"dialects" developed, by many special collections. One
could pursue the U.D.C. analogy, to question the Cleveland
conference, by suggesting that specialized documentation will
encourage internal "thesauri" pertinent to each collection—
even if a universal language does develop. This is a condition
imposed more by the insular commercial world, than by pure
and universal science; but it is mainly the commercial world
that forces the development of information services, and the
terminology of salesmanship is deliberately insular and
purple. If not commerce, the stimulus is military. As an
aside, I often feel that science has become the junction-box
for guns or money.

Although Mr. Vickery writes that "the present era of
specialization in retrieval will be succeeded by a synthesis,
leading to the general use of a common interlingua"—it is
possible that this very specialization will defeat the idealistic
prospects of a universal language. An invaluable contribution

towards such a tool would be an accepted set of principles
for compiling retrieval languages, in the same way that
principles of classification exist as basic form for totally
different pre-co-ordination schemes with exotically varied
notation.

Although the text leads to relevant chapter references, it
seems unfortunate that publishers are omitted in favour of
location of press. A reference such as:

"R. A. Fairthorne. Towards information retrieval. London.
1961" does not lead helpfully to the "familiar and widespread
form . . . that takes place in a library". This seems an
approach of medieval science, determined to ignore the
contribution of two centuries of commercial publishing. Mr.
Vickery, of all people, should provide references that library
and information staffs can service as quickly as possible. If
references are authoritatively quoted, why should it be
necessary to check them? May I plead for information
retrieval practice! The inter-loans bureaux would bounce
that one back, to the inconvenience of the waiting inquirer.
Another point raised by the references lies in an occasional
failure to check subsequent editions. Roget's Thesaurus is
quoted with R. C. Browning as the editor. This can only
refer to the 1952 Everyman edition of Dent. There is now
the 1962 Longman's edition by R. O. Dutch. The Dent
edition is now out of print, and it had no particular signi-
ficance. If Roget is to be cited, then surely emphasis must
be given to the first or to the latest edition?

This may be hair-splitting pedantry with which to tease
such a recognizably standard work, but it represents points
that separate one edition from another, and from a librarian's
point of view, it is part of the frustration of information
retrieval.

Apart from that mere quibble, the references have clearly
been greatly expanded, weeded and pruned; and it is pleasant
to note that all have been incorporated in the excellent index.
(Any work on this subject should expect its bibliographies
and indexing structure to be examined.)

One doubts if practical developments on this side of the
Atlantic will remain static enough for Mr. Vickery to have
four years in which to contemplate and draft a third edition—
although it is safe to assume that his basic retrieval system
theory will be relatively unchanged.

R. D. GEE
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