
On finding the eigenvalues of real symmetric tridiagonal matrices

By A. J. Fox and F. A. Johnson*

The speed of the Sturm sequence algorithm for determining the eigenvalues of a tridiagonal matrix
is shown to be much enhanced when used in conjunction with the LLT or QR method. Comparative
speeds are provided for programs based either on the simple Sturm sequence approach or on one
of the two composite techniques. The LLT program, which was found to be significantly faster
than the other two, is described in detail.

1. Introduction
A general real symmetric or a complex hermitian matrix
can be transformed into symmetric or hermitian tri-
diagonal matrices which have the same eigenvalues
(Wilkinson, 1960). The hermitian tridiagonal matrix
can be further transformed to a real symmetric tri-
diagona) matrix with the same eigenvalues by replacing
the off-diagonal complex elements by their moduli.
Thus an important class of practical eigenvalue problems
can be reduced to the simpler problem of finding the
eigenvalues of a real symmetric tridiagonal matrix.

In the following let A be the real symmetric tri-
diagonal matrix with diagonal elements ax, . . . an, off-
diagonal elements b2, . • . bn and eigenvalues A,, . . . Xn.
We shall assume that A has been normalized so that
1 > A, > — 1 for all i: this can be readily accomplished
by dividing A by the maximum value of Mt where Mt
is the sum of the moduli of all the elements in the ith row.

It is well known that if all b-, are non-zero the eigen-
values are all different (e.g. see Ortega, 1960). Clearly
if one or more of the b, are zero (in practice if |6,| < e,
where e, is a suitably small positive quantity) the matrix
A can be factorized into the direct sum of two or more
smaller matrices. This reduces the computational
labour, since the total amount of work required to find
the eigenvalues of two small matrices is less than that
required for a single large matrix. This feature is of
considerable importance in improving the convergence
of any method for finding the eigenvalues, and in par-
ticular for the QR and LLT methods described below.
It is also an advantage in the eigenvector problem if one
uses Wilkinson's method (1958) since one can find the
eigenvectors of each submatrix separately.

In the following we shall assume that this primary
factorization (as well as the normalization) has been
carried out and thus the eigenvalues are all different.
For convenience we shall label them A, to An so that

1 > A, > A2 . . . A,, > — 1.
It was the purpose of the work reported in this paper

to determine which of the currently available methods
provided the fastest means of determining the eigen-
values of a tridiagonal matrix. A detailed comparison
was undertaken of programs based on the Sturm

sequence, LLT and QR techniques, and the results of
this comparison are presented. The program based on
the LLT approach proved to be the fastest and so its
complete algorithm is presented. Together with the
accompanying notes, this algorithm indicates the
detailed strategy employed for choosing accelerating
origin shifts. Also it shows how both the value of the
characteristic polynomial and a partial Sturm sequence
may be obtained from the LLT algorithm itself.

2. Sturm sequence method
The usual method of finding the eigenvalues of a

tridiagonal matrix A is that of calculating the Sturm
sequence (Ortega, 1960). The number of sign agree-
ments in the sequence shows the number of eigenvalues
greater than or equal to x for a matrix (A — xl).

The standard procedure is to select trial values of x
and use the sign count to update an array of both
upper and lower bounds for the eigenvalues. Initially
all elements of the array of lower bounds is set to —1
and the upper bounds to +1. The trial values of x
may then be chosen by binary chopping between the
bounds for a particular eigenvalue. For convenience
one might choose to determine the smallest eigenvalue
first and then work systematically through the matrix.
It may be noted that whilst trying to determine one
eigenvalue, information might well be provided on the
upper and lower bounds for other eigenvalues. Clearly
the eigenvalues may be calculated to the desired accuracy
by making the upper and lower bounds appropriately
close.

An indication of the speed of the Sturm sequence
method, using a simple binary chopping technique, is
given in Fig. 1. One important disadvantage of the
method is that the algorithm must be applied to the
full nth order matrix whilst determining each of the n
eigenvalues.

3. Improved Sturm sequence method
Once an eigenvalue has been isolated by the Sturm

sequence method and its upper and lower bound
narrowed to a suitable range, an interpolation method
would give an improvement in convergence over a
chopping technique.

* Ministry of Aviation, Royal Radar Establishment, Malvern, Worcs.

98

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/1/98/348182 by guest on 13 M
arch 2024

Tridiagonal matrices

loopoo

10,000

IOOO

-

(
1

1

1

1

1

1

t

/ /

/

/

/

/

' /

/

' ,

/

/

/

Ss(6On')

O R ^ n 1)

LLT(lln^)

10 2O 3O 4O5O 100

OROER OF MAfRIX (n)

Fig. 1.—Comparison of equivalent multiplications

The values of the determinant \A — xl\ provides a
possible though not ideal function for interpolating.
Clearly other more appropriate functions for inter-
polating might be devised. Nevertheless the funda-
mental drawback of the Sturm sequence method remains;
no reduction in the size of a matrix is possible after an
eigenvalue has been determined.

4. The QR method
An alternative approach to the problem of improving

the Sturm sequence method is provided by the QR
method (see e.g. Ortega and Kaiser, 1963).

The QR algorithm for determining the eigenvalue of
a matrix A may, for the purpose of exposition, be
described in terms of the following two operations:

decompose Ak into QkRk 1
and form Ak+l := RkQk)

for k = 0, 1 . . . 00

where A is considered to be the initial matrix Ao, Qk is
an orthogonal matrix and Rk an upper triangular matrix.
All members of the sequence Ak are symmetric tri-
diagonal matrices having the same eigenvalues, and Ak
tends to a diagonal matrix with diagonal elements
(i.e. eigenvalues) ordered in descending moduli as k
tends to infinity. For large k each off-diagonal element
tip tends to zero as the ratio (A//Ay-_ ,)* tends to zero.

The advantage of this method is that with each itera-
tion the entire matrix is processed and, after any initial

G*

ordering, all the elements tend to their final value. As
the off-diagonal element corresponding to the smallest
eigenvalue becomes zero (i.e. \bn\ < e) the matrix of
order n may be factorized into a single element and a
matrix of order n — 1. The progressive reduction in the
size of the matrix makes it attractive as a replacement
for the interpolation method in the Sturm sequence,
since it gives a gain of nearly two in speed. Often an
off-diagonal element other than the «th becomes zero
and the matrix can be factorized into two or more direct
sums. This factorization further reduces the work
required in subsequent iterations (see Table 5). In the
special cases where one of these secondary matrices is a
l x l or 2 x 2 matrix, no further iterations are
required as the solution of these cases is trivial. In all
cases where an off-diagonal element is reduced to zero
we shall designate the resulting factorization as secondary
factorization.

It is advantageous to precede the QR method by the
Sturm sequence method because the convergence rate of
the QR method is intrinsically rather slow. To improve
this one can introduce an origin shift so that the smallest
eigenvalue of the new matrix A — xl is very nearly zero.
This will clearly result in a very rapid convergence of
ti^ to zero, thus leading to an early secondary fac-
torization. The initial choices of the origin shift there-
fore came from the Sturm sequence arrays. The origin
shift was further improved with each iteration of the
QR method by means of an accelerated inverse linear
interpolation procedure based on the values of the
characteristic polynomial. The most appropriate range
at which to change over the strategy from the Sturm
sequence technique to the QR technique was determined
empirically.

It will be seen from Fig. 1 that a significant reduction
in program time was obtained by use of the QR method.

5. The LLT method
Another technique suitable for speeding the final

stages of the Sturm sequence method is the LLT method.
The LLT algorithm for determining the eigenvalues of

a matrix A may be summarized as follows:

decompose
and form

Ak into LkL\"kL\
for k = 0, 1 . 0 0

where A is considered to be the initial matrix Ao, Lk is
a lower triangular matrix and Lk its transpose. All
members of the sequence Ak are symmetric tridiagonal
matrices having the same eigenvalues, and Ak tends to a
diagonal matrix with diagonal elements (i.e. eigenvalues)
ordered in descending moduli. For large k each off-
diagonal element tip tends to zero as the ratio
(A//Ay_,)*'2 tends to zero. This apparent disadvantage
of the LLT method in having only half the convergence
rate of the QR method is compensated for by requiring
only half the computation of the QR method per
iteration (see Table 1).

Like the QR method, the LLT method possesses the

99

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/1/98/348182 by guest on 13 M
arch 2024

Tridiagonal matrices

Table 1

Number of technique and arithmetic operations for one
iteration of each method

TECHNIQUE

(Applied to n x 3 matrix)

QR + determinant
evaluation

Sturm sequence

LLT sign reversal at
the ith element

ARITHMETIC OPERATIONS

+

6«

3n
~T

i— 1

X

3n

—

2/i

—

/— 1

TECHNIQUE
OPER-

ATIONS

n

n

i - 1

important property of secondary factorization. How-
ever, the LLT decomposition may be unstable when the
matrix A is not positive definite, and this fact greatly
alters the strategy for choosing the accelerating origin
shift. More precisely, the trial values of the origin shift
during each LLT iteration must be chosen to be less
than the lowest eigenvalue.

It will be convenient during the subsequent discussion
of the LLT method to be able to refer to details of the
LLT algorithm with origin shifts. (E.g. see Ortega and
Kaiser, 1963.) Let the square of the diagonal elements
of the lower triangular matrix L be dl2, . . . dl2 and the
squares of the off-diagonal elements be dm\ . . . dm2.
Define the vectors

c, = a, — x0 (1)

where x0 is the last origin shift, then if x0 is the current
origin shift the decomposition becomes

y : = x0 — x0

dl\ :=d-y

dl) := C-, — y — dm]

and the recomposition becomes

= 2, . . . n (2)

= / , . . . / !

(3)

b2 : = dl2 x dm)
c •= dl2

XQ '.= XQ.

In this way we effect the transformation

A — x0I-> A — xol.

Clearly, as b2 tends to zero, we have

where An is the nth eigenvalue.
Now it was mentioned above that the effectiveness of

the acceleration of the convergence depends on the
rapidity with which x0 can be made to approach An

from below. Rutishauser (1956) suggested the following
technique. If we know two different values of x, say
xx and x2, such that An > x{ > x2, and we know the
value of the characteristic polynomial of A for x{ and x2,
say F(x{) and F(x2), then a better choice for trie origin
shift is obtained by linear extrapolation to zero F. Thus
we have

- x2)/(F(X]) - F(x2))

since it is readily proved that

Xn > x > x{ > x2

and thus is a better choice than either x, or x2.
The extrapolation method of calculating the next

origin shift was compared with that of using the last
diagonal element (Rutishauser, 1960) or of using the
lower solution of the bottom quadratic submatrix
(Francis, 1962). All three strategies were compared
within the context of halting the decomposition when
the matrix ceased to be positive definite. One immediate
advantage of the extrapolation technique is that, in
principle, it leaves the matrix in a positive definite form.
Also the origin shifts produced by this method were
observed to be accurate even when the diagonal elements
were initially greatly disordered and before many LLT

iterations had been performed. Only when the roots
are ordered and the relevant off-diagonal elements are
small do the other two methods produce comparable
results.

The value of F(x0) may be obtained from the Sturm
sequence algorithm. However, this is an unnecessarily
lengthy way of doing so since F(x0) can be readily cal-
culated from equations (2, 3) and it is given by the
expression

F(x0) = dl] x dl2.. . x dl*. (4)

Again, in order to make this acceleration technique
effective the trial value of the origin shift must lie close
to the eigenvalue. This initial processing is done using
a Sturm sequence method which is required to provide
two lower bounds lying close to the lowest eigenvalue.

It was observed that this information can be obtained
using the LLT algorithm itself. For the quantities dl2.
for the origin shift x were related to the Sturm sequence
functions f,(x) as follows:

< / / ? = / , (*) / / / - i t o « = 2 . . . » . (5)
Thus if the matrix A — xl is to be positive definite all
the dl2 > 0 but if x > Xn (i.e. if A — xl is not positive
definite) at least one dl2 < 0. Indeed if the attempted
decomposition fails when dll is zero or negative then
there are at least k — \ eigenvalues greater than or equal
to the current origin shift x0 (this following from the
Sturm sequence algorithm).

This information is of course less than that provided
by the complete Sturm sequence. The algorithm only
provides precise upper and lower bounds for the smallest

100

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/1/98/348182 by guest on 13 M
arch 2024

Tridiagonal matrices

eigenvalue, and incomplete information on the lower
bounds of the remaining eigenvalue, and incomplete
information on the lower bounds of the remaining
eigenvalues. Nevertheless there is a considerable
reduction in the complexity of the algorithm as may be
seen from Table 1. Furthermore at each changeover
from a chopping to an extrapolating technique half of
the LLT algorithm has already been executed. The size
of the resultant program is, of course, also reduced. On
these grounds we therefore decided to exploit this pro-
perty of the LLT algorithm and not to incorporate the
complete Sturm sequence algorithm.

The above considerations shaped the general strategy
of the LLT method. A detailed exposition of the precise
algorithm devised is given in the Appendix. It is clear
from Fig. 1 that this approach enabled the LLT program
to produce an even faster method for calculating eigen-
values than the QR method.

6. Comparison of methods

The simple Sturm sequence method, the QR method
and the LLT method were all programmed in ALGOL
following the schemes indicated above. These programs
were then run on the RREAC computer and compared
for speed.

Except in the case of the simple Sturm sequence
program the number of iterations per root does not
provide an appropriate assessment of the program speed.
This follows since the computational complexity of the
LLT and QR algorithms is widely different. Also, such
a count would completely mask the saving introduced by
the following considerations: first the reduction in the
order of the matrix by secondary factorization at various
stages during the computation. Secondly, the fact that
the partial Sturm sequence method is likely to be halted
at the kth element where k is very much less than the
current order of the matrix. The first point is of par-
ticular importance when trying to assess acceleration
techniques of the types we have considered. This arises
since their general effect is to reduce the number of
iterations required whilst the matrix is of high order at
the expense of increasing the number of iterations which
might have to be performed on lower order secondary
factors.

In order to provide an accurate and machine-
independent comparison of the relative running times
of the programs, the number of operations performed
in the inner loops of the programs was counted. Both
the number of times each technique was applied and
also the number of arithmetic operations used, were
counted using the scheme provided in Table 1.

The first matrix used for testing purposes was of the
form a, = 0-5 for i = 1 . . . n and b, = 0-25 for
/ = 2 . . . /I. This matrix is particularly suitable for
testing purposes because it possesses an analytic
solution.

Table 2

Test matrix and eigenvalues

DIAGONAL

0-7150
0-4272
0-7122
0-4282
0-7017
0-4405
0-4347
0-4286
0-4278

7000
1000
6000
3000
7000
2000
4000
2000
4000

CO-DIAGONAL

0 0000
01395
01138
0-1738
00216
0-1289
0-0035
0 0025
0 0000

0000
2000
9000
5000
8100
9000
0160
3720
0000

EIGENVALUES

0-8381
0-7578
0-7473
0-4358
0-4277
0-3955
0-3836
0-3022
0-4278

8541
7017
4873
4777
3464
4758
0934
7655
4000

Table 3

Effect of initial interpolation interval on QR method

INTERPOLATION
INTERVAL

0-001
0 005
0010
0 050
0 100

TECHNIQUE

SS

423
268
242
148
124

OPERATIONS

QR

63
85
85

122
135

ARITHMETIC OPERATIONS

+

1012
912
873
954
996

X

1521
1144
1066
932
912

126
170
170
244
270

for / = ! . . . « .

Further, it only exhibits single element secondary
factorization, except for the final 2 x 2 submatrix, a
feature which makes comparison between the two
methods less dependent on the precise strategy chosen.

In order to exhibit the power of secondary factorization
the matrix stated in Table 2 was used; this matrix
exhibits all types of secondary factorization.

The initial stage in assessing the programs was to
optimize the QR program by choosing the most suitable
range at which to change over the origin shifting tech-
nique. The results pertaining to runs using several trial
values of the change-over range are recorded in Table 3 ;
the value 0 05 was chosen as being the optimum range.
It will be noted that the performance of the program is
sensitive to the choice of this parameter. The LLT

method, however, was not found to be particularly
sensitive to the choice.

The optimized QR method was then compared with
the LLT method and the simple SS method for matrices
of various orders. The number of arithmetic operations
required is recorded in Table 4. In order to display the
comparative performances of the two methods in a form
which may be more readily assimilated, a graph of
number of "equivalent multiplications" for each method
is presented in Fig. 1. The artificial parameter

101

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/1/98/348182 by guest on 13 M
arch 2024

Tridiagonal matrices

IOOO

o

o
z
X

2

Z

I O O

20 30
ORDER OF MATRIX

Fig. 2.—Comparison of technique operations

"equivalent multiplication" is found by forming the sum
of arithmetic operations of multiplication, division and
addition, with each division being counted as being
equivalent in machine time to one and a quarter multi-
plications, and each addition (or subtraction) as
equivalent to one quarter of a multiplication.

It is well known that the number of operations
required to determine the eigenvalues of a tridiagonal
matrix is proportional to the order of the matrix squared.
From Fig. 1 it was deduced that the constant of pro-
portionality for the first text matrix was 60 for the simple
Sturm sequence method, 16 for the QR method and 11
for the LLT method. Reference to Fig. 2 and Table 1
shows that the superiority of the LLT method is gained
because of the small number of arithmetic operations
necessary for each technique operation. The evaluation
of the characteristic polynomial directly from the LLT

algorithm is obviously of great value in achieving this.
In view of its superiority only the algorithm for the LLT

method is presented (see Appendix).
The performance figures for both the LLT and the

QR methods are greatly enhanced when dealing with a
matrix which exhibits more than just single element
secondary factorization. From the convergence con-
ditions it is clear that secondary factorization will tend
to arise when certain of the roots are widely spread in
value. The second test matrix shown in Table 2 has

Table 4

Comparison of methods

OPERATION

Addition

Multipli-
cation

Division

\ MATRIX
\ORDER

\

METHOD\

LLT

QR
SS

LLT

QR
SS

LLT
QR
SS

9

481
954

2524

402
932

5049

280
244
0

19

2096
3940

10602

1606
3625

21204

1293
1064
0

29

5161
8833

23881

3838
7691

47763

3242
2494
0

39

9230
15592
42061

6576
13809
84123

5942
4344

0

49

14298
25213
65194

9994
22275

130389

9301
7038
0

Table 5

Comparison of LLT and QR methods for first and second
test matrices. Both matrices are of order 9

MATRIX

First
Second

LLT METHOD

+

481
343

X

402
308

+

280
189

QR METHOD

+

954
645

X

932
738

+

244
138

such wide gaps between groups of eigenvalues and does
exhibit more than single element secondary factorization.
The improvement in performance this brings about may
be noted in Table 5 where the number of arithmetic
operations required for both the first and second test
matrices are compared. Another class of matrices
where secondary factorization aids the speed of con-
vergence is provided by matrices which have close roots
without any corresponding off-diagonal elements being
small. The matrices W2n+1 which have

al — n-\-\—i
at = / — n — 1
b,= \

(i = 1, . . . n + 1)
(i = n + 2, . . ., In + 1)

are examples of this class since their larger eigenvalues
occur in extremely close pairs. Two test matrices of
this type, one with n = 10 and the other with n = 15,
were examined using the LLT program. In both cases,
after the first 13 roots had been obtained the matrix
factorized into two submatrices of equal order between
which each of the close pairs of eigenvalues were split.

Clearly secondary factorization provides a technique
for significantly increasing the speed of the LLT

algorithm, with the unimportant side effect of not
necessarily providing the eigenvalues ordered in size.

102

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/1/98/348182 by guest on 13 M
arch 2024

Tridiagonal matrices

It may be noted that this device cannot be incorporated
in algorithms, such as that of Rutishauser and Schwartz
(1963), for general band matrices.

Both the LLT method and the QR method showed
high accuracy; the errors were typically of the order of
10~8. This was achieved using a computer which works
to an accuracy of 28 binary digits and without recourse
to double-length arithmetic procedures. Nevertheless a
cumulative error did build up in the later roots due to
the successive processing in the LLT or QR algorithm
and the the effect of errors caused by earlier secondary
factorization. Errors are, of course, most severe when
the diagonal elements akk increase as k increases. For
the matrix A, which was of the form

at = i/n + 1 (/ = 1 . . . n)
b, = 1/n + 1 (i = 2 . . . «),

it was observed that the error in the last root, as cal-
culated by the LLT method, was of the order of

15 X 10~8 when n = 100. This error was dropped to
4 x 10~8 and the overall computing time was halved
for the matrix —A.

Conclusion
It has been demonstrated that the LLT algorithm

provides a method of speeding up the later stages of the
Sturm sequence algorithm. For the test matrices con-
sidered the speed of the composite algorithm was more
than five times greater than that of the simple Sturm
sequence algorithm. This increase was achieved, in
part, because of the successive reduction in the order
of the matrix after each determination of an eigenvalue;
this feature is, of course, not available to purely Sturm
sequence methods. Further improvements to the given
algorithm by means of more sophisticated origin shifting
techniques, may be possible. However, our experience
so far is that such refinements produce no significant
increase in speed.

Appendix
Details of the LLT algorithm

In order to render the detailed LLT algorithm more
lucid it is preceded by a glossary for the identifiers used.

Identifier Description
up 1 | first")

f coefficient of [-diagonal element
low lJ lastJ

in current submatrix after primary fac-
torization

up 2 | first!
\ coefficient of foff-diagonal element

low!) lastJ
in current submatrix after secondary factorisation

kli,j,k,l
x
shift
xl
x2
xO

n 1
n J
/12

zl,z2

stf

stb
Ib [1 : m]
dl2 dm2[\

H

m]

working integers
change in trial origin shift
last established origin shift
trial origin shift
lower bound for current eigenvalue
upper bound for current eigenvalue
xl - x2
value of characteristic polynomial cor-

((
xl

<responding to

fl - / 2

working variables when evaluating quad-
ratic factors

step forward "1 special variable to be used
I when trial value xl lies

back [close to or outside limits
J xO and x2

array of lower bounds for eigenvalues
arrays for use in LLT algorithm with
partial Sturm sequence

chop only

to x2

root

when true the strategy is in initial chop-
ping mode otherwise false
when true chopping is towards x2
when false chopping is towards xO
when true have just obtained an eigen-
value directly from a single element or
quadratic factor; otherwise false

procedure eigenvalue(a,b,m,eps\,eps2);
value m,epsl,eps2;
real array a,b;
real eps\,eps2;
integer m;
begin
comment eigenvalue finds the eigenvalues of the normalized

mxm tridiagonal matrix whose diagonal elements
are in a[\ :m] and off-diagonal elements in
b[2:m] and places them in a;

integer up\,lowl,up2,low2,i,j,k,l;
real *,xO,;d ,x2,zl,z2,stb,stfshift,xl2,fl2,flJ2;
real array dm2,dl2,lb[l :m];
boolean root,to x2,chop only;
for i:=2 step 1 until m do b[i]:=b[i] f 2;

/owl:=0;
primfac.upl :=low\-\-\;
if up\ <rn then

begin
comment test for primary factorization;
for lowl :=up\ step 1 until m — 1 do

begin
lb[low\ + l]:=-i;

103

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/1/98/348182 by guest on 13 M
arch 2024

Tridiagonal matrices

if m=2 then begin fowl :=2; go topquad end;
if b[lowl -\-1]<Ceps\ then

begin
if fowl =up\ then go to primfac;
if /owl — up\> 1 then go to start;

pquad: zl :=b[/owl]—a[upl]Xa[lowl];
z2:=0- 5x(a[upl]+a[lowl]);
a[lowl]:=if z2=0 then j#/-/(zl)

else j#r/(0 • 25 X (a[upl] — a[lowl] f 2

fl[/owl]: = — zl /a[up 1];
go to primfac
end

end;
/owl :—m;
comment set parameters initially;

start :up2:=up\ + 1 ;
/ovt>2:=/owl;
shift:=f2:=xl:=0;

x2 := — 1 ; xO:=l ;
root:—false
comment reset parameters for next submatrix;

II: iSroot then
begin
if a[l]<lb[l] then for j:=l— 1 step —1 until w/>2-l

do » [/] : = - 1 ;
x2:=if a[l]<lb[l-l] then a[/] else ft[/-l];
xO:=shift+a[up2—l]+0-l;
if x2> xO then xO: = 1;
xl :=x2+(xO-x2)/(fow2-up2+2);
root: =false
end;

x:=0;
stb:=stf:= 003;

to x2:=chop only:=true;
comment perform II decomposition;

decomp :x: = x l —shift;
i: = up2—\;

end else
begin
comment reset xl by chopping to x2;
xl :=if xl —x2<eps2 then xl — eps2

elsexl+0-6x(x2-xl);
if not to x2 then chop only := false
end;

goto decomp
end of action on failure

end of decomposition;
comment decomposition has succeeded start recomposi-

tion;

for i:=up2 step 1 until Iow2 do
begin

fl:=flxdl2[i]
end;

if dl2[i]<eps2 then go to fail;
for i:—up2 step 1 until /OH>2 do

begin

- x ;
if

begin
comment decomposition has failed reset xO and

lower bounds;
fail:xO:=x\;

for j:=i— 1 step —1 until up2—1 do if
then/£[/] :=xl ;

/
if chop only and (xl—x2)<10~4 then
begin

comment special case for eigenvalues close to or
less than x2;

x l : = i f x l — s t b > — 1 t h e n x l —stb e l se — 1 1 ;
stb:=lOxstb

/ ;
comment test for secondary factorization;

sec: foTj:—low2 step —1 until up2 do if b[j]<epsl then
begin
if j<low2 — 1 then

begin
comment matrix has factored reset a and up2;
for k:=up2—1 step 1 until7—1 do a[k]:=a[k]

+shift
up2:=j+l;
go to //
end;

ify=/ow2 —1 then
begin
comment quadratic factor;

squad:l:=low2—1;
zl :=b[low2]—a[l]xa[low2];
z2:=0-5x(a[l]+a[low2]);
a[low2] :=if z2=0 then ^r/(zl)

else sqrt(0 • 25 X (a[l] —a[low2])
J2+I>[low2])xsign(z2);

a[l]:=a[low2]+z2;
a[low2]:=-zl/a[l]+shift;
low2:=low2—2
end else
begin
comment single element;

single:l:=low2;
Iow2:=low2—1
end;

a[l]:=a[l]+shift;
root : = true;
if Iow2> up2 then go to sec else

Iq .if Iow2=up2 then go to squad else
if Iow2=up2—1 then go to single else

begin
comment see if there are any more submatrices;
if up2—upl<. 1 then go to primfac;

104

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/1/98/348182 by guest on 13 M
arch 2024

Tridiagonal matrices

comment reset up2,low2 and shift for the next
submatrix;

low2:=up2—2;
up2:=upl-{-l;
shift :=0;
go to if Iow2>up2 then sec else Iq
end

end test for secondary factorization;

if root then go to // eke
begin
x\2:=x\-x2;

x2:=xi;
/2:=/l;
if chop only or abs{xl2)> 01 then
begin
comment reset x\ by binary chopping to xO;
to x2:=false;
if(x0-xl)<10-4then

begin
comment special case for eigenvalue close to or

greater than xO;
xl :=if xl+stf<l then xl+stfehx 1;
stf:=stfx 10
end else
xl:=(xO+x\)/2

end else
begin
comment reset xl by extrapolation;
Ufl2j^0 and xl2#0 then xl :=xl -xl2xfl/fl2
end;

goto decomp
end

end
end procedure eigenvalue;

General comments
(a) The basic sequence of operations is as follows:

1. Chop towards x2 until there is a successful
decomposition.

2. Chop towards xO until there is a failure in the
decomposition.

3. Again chop towards x2 until the difference
between xl and x2 is less than 0-01.

4. Extrapolate towards x2.

It is possible, however, for a situation to arise where
xO and x2 do not straddle a root and so special action
must be taken. This situation could arise in one of two
ways. First, it is possible for secondary factorization to
occur before roots are fully ordered, and so produce
incorrect upper and lower bounds for the next root.
Secondly, it is possible for the extrapolated origin shift
to agree with the "true" eigenvalue to almost the full
word-length of the machine. Then, if several iterations
have to be performed with this choice of origin shift, the
round-off errors could change the "true" eigenvalue to
a value below x2.

(b) The algorithm for choosing the initial trial value
of xl leaves scope for experiment. Apart from the
algorithm shown we also tried using the last diagonal
element or the lower solution of the bottom quadratic
factor (Francis, 1962).

Choosing the latter method produced a low number
of Sturm sequence iterations but a large number of LLT

iterations. The method adopted here had a large number
of Sturm sequence iterations but a much lower number
of LLT iterations. The third approach lay roughly
between the other two. Each method was assessed by
counting the number of equivalent multiplications
required for a given matrix. It was observed that
difference between the techniques was not great
(approximately 5-10% variation in the number of
equivalent multiplications). This insensitivity appears
to arise because of the competing nature of the Sturm
sequence and LLT strategies.

(c) For the tests on RREAC which has a 36-bit
word-length the following values were used for the
constants. epsl:=10-'°; eps2:=10~8.

References

FRANCIS, J. "The Q.R. Transformation: A Unitary Analogue to the L.R. Transformation." (1961) Part I. The Computer
Journal, Vol. 4, p. 265; (1962) Part II. The Computer Journal, Vol. 4, p. 332.

ORTEGA, J. M. (1960). "On Sturm Sequences for Tridiagonal Matrices," J.A.C.M., Vol. 7, p. 260.
ORTEGA, J. M., and KAISER, H. F. (1963). "The LLT and QR methods for symmetric tridiagonal matrices," The Computer

Journal, Vol. 6, p. 99.
RUTISHAUSER, H. (1956). "Solution of Eigenvalue Problems with the LR-Transformation," N.B.S. Applied Maths. Series 49,

p. 47.
RUTISHAUSER, H. (1960). "Ober eine kubisch Konvergente Variante der LR-Transformation," Zeitschrift fur Angewandte

Mathematik und Mechanik, Vol. 40, p. 49.
RUTISHAUSER, H., and SCHWARZ, H. R. (1963). "The LR Transformation Method for Symmetric Matrices," Num. Math.

Vol. 5, p. 273.
WILKINSON, J. H. (1958). "The Calculation of Eigenvectors of Codiagonal Matrices," The Computer Journal, Vol. 1, p. 90.
WILKINSON, J. H. (1960). "Householder's Method for the Solution of the Algebraic Eigenproblem," The Computer Journal

Vol. 3, p. 23. 105

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/1/98/348182 by guest on 13 M
arch 2024

