Systematics—a non-programming language for designing and
specifying commercial systems for computers

By C. B. B. Grindley*

The paper describes a new language which provides tools and techniques for the systems analyst.
The main feature of the language is that, like mathematics, it is an aid to problem solving, but,

again like mathematics, it is not provided with a compiler.

A short example is given showing

how the analyst is enabled to construct a model of the information system he is designing
independently of any computer considerations.

In the early days of commercial data processing by
computer, there were no systems analysts as we know
them today. The job of getting work on to the computer
was seen to be only one of programming. True, before
he could write and test his programs, the programmer
had to get the facts from the user. In the event, this
task turned out to be one of major difficulty. How often
did the programmer complain that the user did not know
what he wanted? Today it is not too difficult to see
why this was so. No one person knew all the facts.
The clerks did not know how their separate tasks fitted
into the broad system. The managers did not know
the detailed work that went on within these separate
tasks. More important, many of the rules that the
programmers were seeking did not exist. Managers,
supervisors and clerks frequently exercised their dis-
cretion when deciding on a course of action. Instead of
saying what rules they followed in each case, they said
it was a matter of experience and judgement.

To cap it all, after a while it began to be seen generally
that simply to repeat the existing system was not good
use of a computer. The old system was designed to
suit the capacity of human beings to do work. The
capacity of a computer to do work is in many ways
greater than human beings’, in some ways less. But
whether greater or less, it is essentially different. On
the face of it, it is unlikely that the old system will do.
A new system should be designed to exploit the different
capacity of the computer. Gradually the analysis of
users” requirements, and the design and specification of
an information system to meet these requirements,
emerged as a prior and separate task from programming.

Systems analysis

Although the systems analyst now claims recognition
as an expert in his own right, his title has not been
clearly stated. The overall job of getting work on to a
computer is still something of a relay race, where the
analyst passes the baton to the programmer just about
when he feels he’s had enough. In some cases the
analyst prepares flow charts which consider quite
detailed computer problems, and from which the
programmer codes his program. In other cases he
simply identifies broadly the output required without

attempting to provide all the detailed rules showing how
that output is derived. In a series of studies that Urwick
Diebold undertook about two years ago it was found
that programmers spent less than half their time actually
writing and testing programs. The rest of their time
was taken up mainly with delays caused by something
called “systems queries”. On further analysis, systems
queries were found to be due to:

1. Changes made by the analyst to the system as
originally specified.

2. Misunderstandings between the analyst and the
programmer over the specification.

3. Errors in the specification.

4. Omissions in the specification.

Two things emerged quite clearly. The first was that
within the overall job of transferring work on to the
machine there are two distinct jobs involved. These
jobs are distinct since they serve different needs. Job I
considers the user’s needs and is concerned with designing
an information system. Job II considers the computer’s
needs and is concerned with designing a programming
system which will satisfy these information require-
ments using a computer. The second thing was that
Job I is not just a detailed extension of JobI. Both jobs
explore, in final detail, the separate problems with which
they are concerned. Before the programming function
begins to plan how a particular job is to be performed
efficiently on a certain computer, it must be furnished
with a specification showing, for all cases that can arise,
what is required. T

Designing a system

If the systems man is to provide rules for every case
that can arise then he is, in fact, constructing a model
of the information system he is designing. Even if such
a model were not required before programming could
properly be undertaken, it would still be valuable to
construct it, because it is only by constructing such a
model that the designer is forced to face all the implica-
tions of his system. It is a way of trying out his ideas.

t A definition of the separate tasks of the systems analyst and
of the programmer is offered in Appendix 1 to this paper.

* Urwick Diebold Limited, St. Andrew’s House, 40 Broadway, London, S.W.1.

124

707 LINIRIAL 1 110 1e9nB £a cncezars=1 1zc/ammnientifitionzniiion-dno:-anitianese /7 ecdnil 111011 DaNeoll IAMOA

Systematics

What are the requirements for model building? They
are twofold:

Firstly: to break down the problem into its component
parts.

Secondly: to describe precisely the relationship of all the
parts with one another.

The scientist frequently has to construct models. He
has developed techniques and languages for this purpose,
for example, mathematics. The need of the systems
analyst is clear. To perform Job I he needs the tech-
niques and languages to construct models of information
systems.

Commercial programming languages do not at present
meet this need. Let us examine why this is so. It is
interesting to compare them with scientific programming
languages, for example, ALGOL, which do appear to
satisfy the needs of the scientist. This is because his
needs were different. True, he needed to construct
models. But long before the advent of the computer,
mathematics was already developed to the point where
it was rich in concepts and techniques for this purpose.
Scientific . programming languages have been able to
make use of existing mathematical notation. The
systems analyst had no such language for designing
information systems. English existed, but to the extent
that programming languages have imitated English they
have missed the point. English is entirely unsuitable for
model building. It is imprecise and open to interpre-
tation. To illustrate this it is only necessary to look at
the version of English used in statutes in an attempt to
cover a situation completely, and then to see the lengths
to which courts have to go in practice in order to inter-
pret these attempts. The commercial programming
language should ideally have provided for the analyst
his equivalent of mathematics. But, no matter how
great is the claim of any commercial programming
languages to be problem orientated, they are, without
exception, designed to suit the way a computer goes
about processing data. There is good reason for this.
It is the aim of such languages to be automatically
translatable into a machine’s language. Commercial
data processing has had to make efficient use of com-
puters. The difficulties of producing compilers to
translate efficiently into a machine’s language have acted
as a restraint upon the free development of concepts
useful to the analyst.

Systematics

A new language has been developed to meet this need.
It is called systematics. This language is solely concerned
with techniques and concepts useful to systems analysts
in designing information models to meet user’s require-
ments. This has been achieved largely because no
attempt has been made to provide it with a compiler.
It is thus completely computer-independent. It is
interesting to compare this feature with one of ALGOL’s
most important uses. The 1958 Zurich Conference set
for ALGOL three objectives. One was that it could be

125

used to describe computational processes in publications.
This objective has been successfully achieved to the extent
that the language is now frequently used to describe
processes which it is never intended to perform on a
computer. In such descriptions ALGOL expressions are
used for which no compiler exists. Essentially, systema-
tics is a tool for specifying solutions to information
systems problems. More important, it is also a tool for
developing such solutions. Like most tools for scientific
analysis, it points to deficiencies in proposed solutions.
It shows the analyst where more information is required,
where certain circumstances have not been covered,
where rules suggested are inconsistent. The models
constructed may be of large total systems or of detailed
parts of such systems. The system may eventually be
performed on a computer, or partly on a computer and
partly using other processing methods, or not on a
computer at all.

How does systematics work? Whilst not attempting
a full description of the language in this paper, the three
most important features are described. In addition, a
detailed example of systematics applied to a simplified
payroll is given in Appendix 2. Before discussing these
three features, it should be said that the overall objective
of each of them is to give precision to the building of
information systems’ models comparable to that supplied
by mathematics. Why then not use mathematics? In
fact, mathematical concepts and notation are used freely
where appropriate. Indeed, any existing, precise and
standard notation may be used within systematics if
found to be useful in the context of the information
system being designed, e.g. statistical and Boolean
notation. Systematics provides a framework within
which these existing concepts, together with a small but
growing number of concepts peculiar to systematics
itself, may be used. But this framework is designed to
suit the problems encountered in information systems
design. These problems are different from mathematical
problems. They differ principally in two ways. Firstly,
in information systems, the relationship between a given
result and the information from which it is derived is
usually relatively simple. The complexity of the problem
arises from the very high number of alternative relation-
ships which may apply depending on the values and
states of other items of information. In mathematics
the relationship between results and the information
from which they are derived is generally far more
complex, but the number of alternative relationships is
relatively small. Secondly, relationships in information
systems depend not only upon quantities, but upon other
qualities which we are not accustomed to measure and
to which the assignment of numerical values appears
inappropriate, e.g. sex, behaviour, location, etc.

Three principal features of systematics

Alternative conditions

The first feature is concerned with the problem of fully
exploring all of the high number of alternative conditions

707 LINIRIAL 1 110 1e9nB £a cncezars=1 1zc/ammnientifitionzniiion-dno:-anitianese /7 ecdnil 111011 DaNeoll IAMOA

Systematics

which can arise in information systems. The language
thus recognizes two entirely different sorts of statements.

(i) Statements of condition—Connectives.
(ii) Statements of derivation—Expressions.

The statement of condition is contained within a Boolean
AND/OR matrix. Tt treats all combinations of the
possible states of relevant items of information and shows
what action follows each of them.

OR
e.g. 1 P q
I2 v X v X
AND

Essentially it says if item 1 is state p AND item 2 is
state v do expression 1, OR if item 1 is state p AND
item 2 is state x do expression 2, OR etc. The state-
ment of derivation or expression simply shows how a
derived piece of information is related to the pieces of
information from which it is derived, e.g.

Derivative = state of item 1 - state of item 2.

Definition of qualities

The second feature is concerned with giving precision
to qualities other than quantity. It provides for two
things. Firstly, for each item of information, the way
in which its particular state can vary significantly from
case to case is shown. Secondly, a name or reference
for each of these states is given. For example:

Item Variability

Area. Europe: Africa: Rest.

Variability should not be confused with “range”, fre-
quently given for each item of information by systems
analysts. Range is for checking the validity of each item
as read by the computer. Variability is for the purpose
of exploring all significantly different states of the items
within the connectives just described. For example, if
“area” were one of the items in the Boolean matrix,
then what to do in the case where its state was “Africa”,
or “Europe”, or “Rest” would have to be shown. And
the names Africa, Europe and Rest would have to be
used. The quality of area may thus be talked about
with precision. It is defined as being one of these three
states.

Classification of information

The third main feature is the classification of each
item of information according to the part it plays within
the model. One method of classification is according
to permanence. Four conditions are recognized. Does
the state of the item remain unchanged during the
operation of the model or does it change. If it changes
then is it up-dated, originated or destroyed. Another
method is by generation. For those items that change

126

their state it is shown whether they have yet changed
and if so, how many times. A further major classification
of the items of information is into a hierarchy of classes,
sub-classes, sub-sub-classes, etc. It follows here princi-
ples well established in logic, scientific method and in
language construction.

The example given in Appendix 2, together with the
notes at the foot of the Appendix, should illustrate in
more detail the principles of systematics. The language
is no more than a specialized branch of mathematics.
It provides additional tools which are particularly
valuable to the design of information systems. It lays
the foundation for a body of knowledge appropriate to
this new field of activity. The word “new” is used
advisedly since it is only the recent use of the computer
for processing information that has made it necessary
to design and construct information systems with such
precision. Until the appropriate body of knowledge and
techniques are reasonably well formulated it is not
intended to inhibit the development of systematics by
providing it with a compiler.

Appendix 1

Definition of systems analysis and of programming

Systems Analysis (ignoring work other than that to be
petformed by computer)—Expressing the relationship
between the data fed into a computer system and the
information to be produced by it.

Programming—Expressing the relationship between the
data fed into a computer system and the information
to be produced by it in a manner which is efficient in
terms of the capabilities of that system and in a
manner which can be interpreted by that system.

Implications of definitions

1. The analyst requires no computer knowledge.
True, before constructing a detailed model of an
information system, satisfaction that it is feasible to
perform the work on the computer should be obtained
as far as is possible. Also when the analyst is concerned
with the interface between user and machine, j.e. design
of input and output documents, computer considerations
are involved. Both these activities will require liaison
with the programming function. But the statement
remains broadly true. The analyst is concerned with
identifying the user’s needs and constructing an informa-
tion system to meet them.

2. The programmer is solely concerned with efficiency
problems involved in processing the information system
on a given computer, and with translating his solution
of these problems into the machine’s language. Trans-
lation from systematics could, of course, be done
automatically. The programmer’s basic job therefore is
concerned with computer efficiency. If, and only if,
computers are made where processing efficiency no
longer matters, or efficiency problems can be solved
automatically, his job will disappear.

20z UoJE € U0 159NnB Aq £0€£Z9/12 |/2/6/9101ME/|UlW0D/L00" dNODIWapEDE//:SA]Y WO POPEojuMOQ

Systematics

Appendix 2
Example of systematics applied to a simplified payroll
LEVEL 1.
THE MODEL
E! Calculate Pay
Dictionary
Reference Description O I R Variability
E! POl E number v v v NNNN
P02 name v v A—
P03 sex v M:F
PO4 birth v NN/NN/NN
P05 reduced N.I. v o Vix
P06 pension scheme v O.K.: No N.L:
No G.P.
P07 a department v v NN
P08 marital status v Single: Married:
Widow
P09 rate of pay v 0d.—25/0d.
P10 date v NN/NN/NN
P1t holiday v 0—15
001 gross pay v N—
002 net pay v N—
P12 (a) hours worked v 0—80 (D
P13 sports v 6d.: 1/-
P14 hospital v 0d.: 3d.
003 national insur-
ance v N—
UO! (a) hours to date v N@&)
uUo02 gross pay to
date v v N—
004 tax v N—
uo3 tax to date v v N—
P15 tax code v 0—-999
005 other deduc-
tions v Nes>
006 maximum
hours v N—s
etc.
LEVEL 2.
ROUTINES
(only National Insurance shown)
Characteristics statement 001
T
+
003 = - P03 +—— P10
P04
P05
P06
Conditional statement or
P06 0.K.: No G.P.
and |

127

Connective statement

Intermediates Flowchart
A—Age A,B
I
B—40 hr. earnings —a, C
I
C—Flat rate '
D—Graduated pension b
Connectives ‘
D
|
003
a: C= —A, B, P03, PO5.
b: P06, O01.
LEVEL 3.
EXPRESSIONS
A = — P10 — P04
|
}
B = - 001
| > P12 (a)
i
a
1d.
D =~ 41% x 00l r>-5d.
{
003 = - C+D
Level 3, contd. CONNECTIVES
or
a:A <18 / |
P03 M F | M F |
P05 n v x |V x | v x|
B nn n n >£5 | | n >£5
and
C: l 19/-3d. 7/6]|9d. 13/89/5 6d. 11/5 7/§|
i 003 b
or
b:P06 [OK. [|
001 £9 |
and | f
] D 003
!

707 LINIRIAL 1 110 1e9nB £a cncezars=1 1zc/ammnientifitionzniiion-dno:-anitianese /7 ecdnil 111011 DaNeoll IAMOA

Systematics

N.B. (i) Assumed for simplicity that hours worked
not zero.
(i) Intermediates not calculated assumed to be

Zero.

Key to symbols used:

=— derived from
4 — together with
— followed by
n not applicable
/ the remainder of the range within
straight brackets
x round y and above up to nearest
ry x.

Notes: Systematics describes the information model at
three levels of detail.

Level 1. The model itself

A model is restricted to a major and separate operation
performed upon one class only. At this level a broad
statement of the purpose of the model is given identifying
the information class concerned. This is followed by
the dictionary. The dictionary lists and classifies every

item of information used in the model and defines its
variability. Permanence is indicated by P = perman-
ent, U = up-dated, O = originated. Subscripted “a”
indicates a sub-class. On its own it indicates the
principal of that sub-class, i.e. the item of information
that uniquely identifies a particular member. In brackets
it indicates a subordinate of that sub-class. O, I and R
show whether the item is output, input or held as a
record, or what combination of these apply.

Level 2. Routines

A separate routine is provided for each up-dated item
and for each originated item. It states which other
items are required to derive the item concerned and
under what conditions the routine is performed.

It also states the ‘‘intermediate” steps taken on the
way to the final derivation, and how these are related
to each other through the connectives. References are
provided for each expression (capital letters) and each
connective (small letters).

Level 3.

The derivation for each routine is stated in final detail
at this level.

Expressions and connectives

Correspondence

To the Editor,
The Computer Journal.
Sir,
The asides, as it were, in J. P. Penny’s analysis of a time-
shared computer system (this Journal, Vol. 9, No. 1, p. 53)
raise issues that are by no means settled regarding the pre-
ferred or even useful storage organization of such systems.
Towards the end of Section 5 of the paper we have the
assertion that the storage requirements of a program can be
found exactly when it is compiled. This is certainly not true
of programs written in ALGOL, CPL, PL/l, or similar
languages, the similarity being that they allow dynamic
storage allocation. That this is not an exotic frill only of
interest to the far out fringe I can testify after nine years’
connexion with commercial and industrial applications of
computers. There, there are very many practical jobs that
could be greatly simplified, completed more speedily, and
made cheaper to run, given full dynamic storage allocation.
In Section 2 we have the argument that the simplicity and
inherent efficiency of single level storage is attractive for time-
shared systems. But this assumes that it is convenient, let
alone economic, to have all of a program, and all of its data
space, available in primary storage at the same time. Firstly,
most programs above the level of student exercises may have
50 or more of their instructions written only to deal with
exceptional circumstances or errors. On any particular run
of the program one hopes that most of this necessary lumber
will not be called upon. It is therefore not economic to use

128

single level storage if much of it is not called into use. A
similar situation arises with, for instance, periodic analyses
appended to a regularly run program. In an ideal world
we would have two debugged versions of the program, with
and without analysis segments, to run as required. But in
practice there are too few programmers to do the tidying up,
and multiplying programs harms the administration of the
computing facility.

Secondly, most programs have several distinct phases,
initialization, close up, main processing cycle, and so on.
Although they may share common subroutines only one
phase need be available for execution at a time. Thus the
logical structure in the way we happen to write programs
would seem to be amenable to the reasonably efficient use
of multi-level storage systems, as long as the source language
programmer is only faced with a virtual single level store of
suitably vast size.

Reverting now to time-sharing, it would seem that we can
only make efficient use of the large high speed primary storage
required for this if we also incorporate in our system very
much larger secondary storage to buffer the fluctuating
storage requirements of the programs concurrently in the
system.

Yours faithfully,
H. D. BAECKER
Imperial College,
London, S.W.7.
12 May 1966

707 LINIRIAL 1 110 1e9nB £a cncezars=1 1zc/ammnientifitionzniiion-dno:-anitianese /7 ecdnil 111011 DaNeoll IAMOA

