
Systematics

N.B. (i) Assumed for simplicity that hours worked
not zero.

(ii) Intermediates not calculated assumed to be
zero.

Key to symbols

>
n

i
X

ry

used:

derived from
together with
followed by
not applicable
the remainder of the range within

straight brackets
round y and above up to nearest

X.

Notes: Systematics describes the information model at
three levels of detail.

Level 1. The model itself

A model is restricted to a major and separate operation
performed upon one class only. At this level a broad
statement of the purpose of the model is given identifying
the information class concerned. This is followed by
the dictionary. The dictionary lists and classifies every

item of information used in the model and defines its
variability. Permanence is indicated by P = perman-
ent, U = up-dated, O = originated. Subscripted "a"
indicates a sub-class. On its own it indicates the
principal of that sub-class, i.e. the item of information
that uniquely identifies a particular member. In brackets
it indicates a subordinate of that sub-class. O, I and R
show whether the item is output, input or held as a
record, or what combination of these apply.

Level 2. Routines

A separate routine is provided for each up-dated item
and for each originated item. It states which other
items are required to derive the item concerned and
under what conditions the routine is performed.

It also states the "intermediate" steps taken on the
way to the final derivation, and how these are related
to each other through the connectives. References are
provided for each expression (capital letters) and each
connective (small letters).

Level 3. Expressions and connectives

The derivation for each routine is stated in final detail
at this level.

Correspondence

To the Editor,
The Computer Journal.
Sir,
The asides, as it were, in J. P. Penny's analysis of a time-
shared computer system (this Journal, Vol. 9, No. 1, p. 53)
raise issues that are by no means settled regarding the pre-
ferred or even useful storage organization of such systems.

Towards the end of Section 5 of the paper we have the
assertion that the storage requirements of a program can be
found exactly when it is compiled. This is certainly not true
of programs written in ALGOL, CPL, PL/1, or similar
languages, the similarity being that they allow dynamic
storage allocation. That this is not an exotic frill only of
interest to the far out fringe I can testify after nine years'
connexion with commercial and industrial applications of
computers. There, there are very many practical jobs that
could be greatly simplified, completed more speedily, and
made cheaper to run, given full dynamic storage allocation.

In Section 2 we have the argument that the simplicity and
inherent efficiency of single level storage is attractive for time-
shared systems. But this assumes that it is convenient, let
alone economic, to have all of a program, and all of its data
space, available in primary storage at the same time. Firstly,
most programs above the level of student exercises may have
50 or more of their instructions written only to deal with
exceptional circumstances or errors. On any particular run
of the program one hopes that most of this necessary lumber
will not be called upon. It is therefore not economic to use

single level storage if much of it is not called into use. A
similar situation arises with, for instance, periodic analyses
appended to a regularly run program. In an ideal world
we would have two debugged versions of the program, with
and without analysis segments, to run as required. But in
practice there are too few programmers to do the tidying up,
and multiplying programs harms the administration of the
computing facility.

Secondly, most programs have several distinct phases,
initialization, close up, main processing cycle, and so on.
Although they may share common subroutines only one
phase need be available for execution at a time. Thus the
logical structure in the way we happen to write programs
would seem to be amenable to the reasonably efficient use
of multi-level storage systems, as long as the source language
programmer is only faced with a virtual single level store of
suitably vast size.

Reverting now to time-sharing, it would seem that we can
only make efficient use of the large high speed primary storage
required for this if we also incorporate in our system very
much larger secondary storage to buffer the fluctuating
storage requirements of the programs concurrently in the
system.

Yours faithfully,
H. D. BAECKER

Imperial College,
London, S.W.7.
12 May 1966

128

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/2/128/623318 by guest on 13 M
arch 2024




