Writing simulations in CSL

By J. N. Buxton*

This paper discusses the writing of programs to express simulation problems in the control and
simulation language CSL. The descriptions in the text are in terms of a single problem, for
which a full program is given as an appendix. Though some new features of the new version of
CSL are described, the purpose of the paper is mainly expository.

The word “‘simulation” is used in many contexts and
has become one of the more confusing terms in the com-
puter field. For example, it is used in the simulation of
the order code of one computer on another, in the
simulation of aircraft or guided weapon control systems
by analogue computers, and in operational research.
It is the latter use which is implied in the title and for
which CSL is designed.

The first version of CSL (Control and Simulation
Language) was designed as a joint project by IBM
United Kingdom Ltd. and Esso Petroleum Co. Ltd.
(Buxton and Laski, 1962; CSL Reference Manual, 1962).
Its initial applications were to the solution of problems
in operational research connected with the control of
industrial organizations. These problems were solved
by simulation; that is, by writing in CSL a program
purporting to imitate the working industrial system, and
then studying the effect of changes in the methods of
control of the system by manipulating the imitation
program. The basic premise behind this approach is
that it is cheaper and less disastrous to experiment with
a computer program than to experiment with the real-
life system of which that program is an imitation.
Furthermore, it may be impossible to experiment on the
real system if, for example, it does not yet exist.

During the design period it was realized that a pro-
gramming language built to imitate real-life systems on
a computer is likely also to be suitable for writing com-
puter programs to control the real system. The first
major application of CSL, due mainly to Dr. J. G.
Laski at Esso Petroleum Co., was in fact a program to
control the distribution of petroleum products (Laski,
1965). The control program was written in CSL, tested
by surrounding it with a simulation of the distribution
system also written in CSL, and subsequently tested on
control of the real distribution system. Of the two key
words in the title “Control and Simulation Language”,
the first is probably the more important.

This experiment, and other early uses, revealed many
possible areas of improvement which led to the prepara-
tion of a second version of the language. The second
version of CSL, described in this paper, has been pre-
pared initially for the IBM 7090/94 by IBM United
Kingdom Ltd. The compiler has been designed and
written mainly by P. Blunden, P. Grant and G. Parncutt
of IBM, and the services of the author of this paper were

used as consultant in the design of the language. There
is little that is basically new in the work; the fundamental
ideas of CSL as expressed in Buxton and Laski (1962)
still stand, but the language represents a considerable
revision and extension. A full technical description is
given in CSL Reference Manual (1965) available from
IBM United Kingdom Ltd.

Basic system description

The systems for which CSL is used have certain basic
properties in common. Their components are described
in terms of groups of objects known, for lack of a better
word, as classes of entities. All entities in a class are
similar in that their basic properties are similar though
not necessarily identical. The properties of entities
may require quantitative storage or qualitative storage,
and the logical interactions between entities may be
extremely complex.

This may become clearer after consideration of an
example. The specimen program given in the Appendix
has as its aim the simulation of the operation of a simple
port. The objects handled by a port are traditionally
known as ships. All ships are similar, in that they all
float, and so we group them into a class of ships. Other
classes of entities which may arise are, for example,
classes of tugs and berths. This example is, in fact,
based on a real industrial problem connected with the
handling of ships in a port suffering from insufficient
facilities to handle its traffic. Fairly heavy charges are
incurred if ships are held waiting at the port before
unloading; however, the installation of each extra berth
involves heavy capital outlay. The problem of adding
the optimum number of extra berths was solved by
constructing a simulation model program which imitated
the operation of the port, and running this program
with varying numbers of berths in the system. The out-
put of each run was statistical data, such as ship queuing
times, on the performance of the model for a certain
number of berths. These outputs were used to work
out costings for a range of possible port configurations.

The isolation by the user of classes of entities is always
a little arbitrary; (for instance, for some programs it
may be preferable to have a class of tugs; for others it
may be more useful to have a single class of floating
objects). The basic point is that members of a class are
in the main interchangeable.

* C.E.LR. Ltd., 31, Newman St., London W.C.1; and University of London.

707 idvw 21 110 1eanB £a +ccezariet /ziciamnientifinionniion-dno-amniianeae/-ednii 1o paneoi IO

Simulations in CSL

Numerical operations

The traditional means of holding information
describing the properties of objects is by numerical
storage. The facilities available for holding this infor-
mation are similar to those in conventional programming
languages; the programmer may define real and integer
variables or multi-dimensional arrays of variables, and
may perform arithmetic operations on these variables.
For example, the loads carried by the ships in the system
could be held in a one-dimensional array called LOAD,
where the load aboard the X-th ship is held in LOAD (X).

The form of arithmetic expressions and assignment
statements is similar to FORTRAN and will not be
further described in this paper. Simple test statements,
of which there are many examples in the sample pro-
gram, consist of two arithmetic expressions separated by
one of the six relational operators, GE, GT, EQ, LT
and LE which have the same meanings as in FORTRAN.

The result of success of a test statement is that control
proceeds to the next statement. In the event of failure,
a statement label can be specified as destination; the
meaning of a test failure condition is more fully discussed
below.

The handling of statistical information plays an
important part in simulation of systems, both as input
and output. Storage units called histograms are pro-
vided for this purpose; they may be used to accumulate
counts of statistical variables, and arithmetic functions
exist to take random samples from their populations.
Histograms may be grouped into arrays of histograms.

Repetitive operations are carried out by FOR state-
ments, whose properties resemble loop control statements
in other languages. The range of repetition of such a
statement is denoted by indentation of the group of
statements which it controls. Positive or negative incre-
ments may be used, and if the range is computed on any
repetition to be zero or negative, the group is skipped.

A problem frequently encountered with automatic
programming languages in general is that of holding
very many items of information, each of which is quite
small. This calls for the packing of more than one item
of information into each storage word. The facility is
provided without difficulty in CSL; an integer array
definition may contain a packing factor—specified in the
definition—thus:

INTEGER DATA (100,60) PACK 6

The storage items in this array are then packed at six
entries per word as signed integers; though the array
includes 6000 items, in fact only about 1000 words of
storage are used.

Operations on names

The basic premises of the system are that there are
two possible ways of holding information about the
entities of the system: the quantitative or numerically
coded way described above, and a qualitative way
which is about to be described. The basis of the quali-

138

tative approach is that for many purposes, in particular
that of making logical choices, it is preferable to record
properties of entities by holding them in groups which
share a common property or properties.

This is done by using entity names. They are the
third type of item which may be manipulated in a CSL
program: they differ from the two numerical types in
that the entity names valid in a specific program have
meaning only in that program. Entity names may be
stored in variables or arrays which are declared to be of
type NAME, or ordered lists of entity names may be

stored in sets. Entity names from any class may be
stored freely in any set or name storage; a set is an
ordered list of names of indefinite length. Thus, for the
purpose of making a choice of a ship to berth in the
port, it may be sufficient and more convenient to know
whether the ship is large or small rather than knowing
in detail its tonnage and load. This can be done by
recording the entity names of large ships on a set called
LARGE.

There are three main types of expression which can
arise in CSL statements; integer, real and name expres-
sions. The system inserts transfer functions freely
between the two arithmetic types and thus mixed type
arithmetic may be performed. Furthermore, if a name
expression is used in an arithmetic context, a transfer
function is applied to extract the serial number part of
the name and use it as an integer.

In an analogous way to arithmetic statements and tests
the language has statement forms for the manipulation
of entity names. Clearly arithmetic cannot be done on
them, but they can be moved on and off sets, compared
with each other, and searched for in sets. Examples of
statements carrying out these operations occur in the
Appendix.

Sets serve two basic purposes. Their first use is in
making logical decisions. For example, in real life
the decision to berth a particular ship is based on a
selection process which chooses from all ships in the
harbour and waiting to be berthed, one satisfying various
possible criteria on size, type of cargo, i.e. crated or
loose and so on. Now, in the CSL imitation, the user
may define sets called INHARBOUR, LARGE, SMALL,
CRATED, LOOSE and he may use a range of search
and select statements to find whether a ship exists which
has, for example, its name on the sets INHARBOUR,
SMALL and CRATED.

The second basic use of sets is to represent queues;
this is possible as sets contain ordered lists of entity
names. A selection process such as that described in
the previous paragraph may well produce the result that
several ships suitable for the berth exist in the harbour,
and the user in this case may wish his program to select
the first. In many real-life situations, the process of
making a choice involves making a selection of a sub-
group of objects which have suitable properties, combined
with some priority and queuing considerations which
guide the final choice of a single object. This state of
affairs is reflected in CSL statements; for example, the

707 idvw 21 110 1eanB £a +ccezariet /ziciamnientifinionniion-dno-amniianeae/-ednii 1o paneoi IO

Simulations in CSL

statement which selects the first ship waiting in harbour
which is small and carries crated cargo and provides its
name in the name type variable S, is

FIND S HARBOUR FIRST
S IN SMALL

S IN CRATED

The. range of compound statements of this type is
extensive, and is probably the most important feature
of the language.

Time and dynamic descriptions

Interactions in a real system are dependent on time,
and the system moves through time. It is therefore
necessary to have some means of representing time in a
simulation program. Time values are held in what are
called T-cells. T-cells may arise in two ways; either
defined as single integer cells or arrays or as cells attached
to entities. In all cases they are recognized by prefacing
their names with T. For example, if the class of ships
is defined thus:

CLASS TIME SHIP. 100

then this serves to define entity names as above, and
also 100 T-cells addressed as T. SHIP. 1, .. ., T. SHIP. 100
An array of integer T-cells could be defined as

TIME BREAKDOWNS (10)

T-cells have all the properties of other integer cells,
and may participate normally in arithmetic and tests.
Their time-advancing properties are additional.

The execution of a program is carried out under the
control of a CSL executive routine in a repeated two-
stage process as follows. Stage 1 treats all T-cells which
arise in the program as if they contain time relative to
“now” as zero; that is, a future time is positive. The
T-cells are scanned to find the smallest positive non-zero
value in any cell. This is regarded as the time of the
next event or the time at which an event is next able to
arise in the system. The program is now advanced to
this position in time by subtracting this value from all
T-cells. This completes stage 1.

In stage 2 the main routines of the program itself are
entered. The user must specify his program as a series
of individual routines called activities, and stage 2 con-
sists of an attempt to obey each of the activities in turn.
Each activity describes the rules relating to the per-
formance of one kind of operation in the system: for
example, that of unberthing a ship. The statements in
an activity normally begin with a series of tests to find
out whether the activity can be initiated: these may be
tests on T-cells to see whether, for instance, any ships
are due to leave a berth.

After the opening tests follow the statements which

139

actually carry out the work of the activity; e.g. arith-
metic and set-manipulation statements.

The actual question of division of the program into
activities is governed by individual programming style.
The activities must clearly cover all possible courses of
action available in the system, but this is not the whole
story. For instance, in the example in the Appendix
the berthing of large and small ships are handled as
separate activities. The orders in these are largely
duplicate; should they therefore be combined into one
activity? This is mainly a question of taste and as
such is not easily resolvable on logical grounds.

The structure of a CSL test can now be more fully
explained. The most frequent use of a test is at the start
of an activity; under these circumstances, if the test
fails, it may be assumed that the activity cannot be
carried out and the natural thing to do is to try the next
activity. For this reason the customary operation of
computer test statements has been reversed in CSL; a
test failure with no specified destination leads to transfer
of control via the executive routine to the next activity,
whereas in the case of success the next statement is
obeyed. To provide more detailed control of flow a
failure destination statement label may be specified, e.g.

DATA (10) EQ 4 @ 87

In the event of failure, control goes to the statement
labelled 87.

It should be emphasized that stage 2 consists of an
attempt to obey all the activities specified in the system.
Apparently this involves much redundant effort, as at
most points in time only one or two activities are likely
to be entered successfully and the rest will be abandoned
after a test or two, but a closer analysis shows that
computing time to carry out work of this kind is expended
in any simple simulation programming system, whether
it is carried out under direct control of the programmer
or not. It seems, therefore, more useful to make the
necessary testing explicit and under the user’s control.

When all the activities in the system have been entered,
the normal control procedure is that a return to stage 1
takes place and time is further advanced. This procedure
is not in itself sufficient; activities are interlinked, and
the completion of one activity may render possible the
initiation of another. For example, the unberthing of
one ship will free a berth which may be used by another.
The user can control this in two ways; firstly, by use of
a special device (the RECYCLE statement) which causes
further attempts to obey the activities to be made and
secondly by careful choice of the order in which activities
are specified.

Compilation

Simulation programs are notoriously hard to test on
a computer. The reasons for this are quite fundamental;
firstly a simulation program is usually a representation
on a serial computer of processes which in real life take
place in parallel and secondly, its course of operation is

707 idvw 21 110 1eanB £a +ccezariet /ziciamnientifinionniion-dno-amniianeae/-ednii 1o paneoi IO

Simulations in CSL

dependent on random sampling techniques. The pro-
gramming system must, therefore, offer to the user the
maximum possible assistance in checking out his pro-
gram. A system in which the user may have to resort
to study of a machine dump or an assembly language
listing of his compiled program is just not good enough
in this particular area of programming.

The compiler which is at present available for the
new CSL runs on an IBM 7094 computer under the
IBSYS operating system. It carries out a thorough
syntactic check on validity of an input program, and
contains various facilities by which the user may request
dynamic checking on, for example, array subscripts
being within bounds during actual execution. Through-
out the checking system the principle followed is that ail
reports to the programmer must be made strictly in
source-language terms.

Sectors of program may be compiled and run inde-
pendently. The problem of changing parameters in the
program for re-runs, such as class populations or array
dimensions, is solved by a programming device which
enables such changes to be inserted without forcing
re-compilation of the entire program.

Summary of facilities

The language provides facilities for describing compli-
cated interactions between groups of objects which may
have complex properties. The properties of objects can
be expressed in two ways: by traditional numerical
coding and by recording the names of objects sharing
some common properties on sets, which are ordered
lists of names. Facilities for the former approach
resemble conventional languages, with some additional
features such as statistical storage devices. The latter
approach has two main features—firstly, it is possible to
carry out sophisticated selection procedures using a
series of language statements based initially on the
predicate calculus, and secondly, queuing and priority
systems can be constructed.

Time-values in the system are held in special integer
variables regarded as holding relative times. The time-
advancing mechanism depends on division of the pro-
gram into activities. It is operated by an executive
routine in two stages which alternate indefinitely; in
stage 1 time is advanced, by treatment of the time cells,
to the next event, and in stage 2 an attempt is made to
obey every activity.

CSL is designed to express complex decision problems
on a computer, by enabling the user to define the com-
ponents of a system and to write orders describing
complex interactions and choices amongst these com-
ponents. It permits sophisticated handling of these
interactions but it imposes the necessity for a fixed
population of components; situations which involve
flow necessitate a simple programming device, exempli-
fied by use of the set OCEAN in the example as a source
and sink for ships flowing into and out of the system.
Most programming languages of this general type adopt

140

a dynamic data structure which permits the user to imitate
more directly the concept of flow, by, forexample, writing
orders which cause creation and destruction of entities.
The disadvantage of a dynamic data structure is that pro-
gram execution is usually less efficient and sophisticated,
and for this reason CSL uses static data structures.

Conclusion

The uses of this type of programming language are
manifold. Problems of on-line decision making and
control are in their infancy, and the only noteworthy
work yet done using CSL in this area is that by Laski
at the Esso Petroleum Company. However, in the long
run this may prove to be the biggest area of application
of this type of language.

At present the language is mainly used as a tool to
write simulation programs of new systems under design
or old ones needing improvements or re-design. The
many problems tackled have included traffic movement
on two national railway systems and various other
transport systems, industrial scheduling problems and a
maternity hospital.

It will be realized that a special-purpose language
such as CSL does more than provide its user with useful
manipulation statements; it imposes a programming
style and a way of thinking about the problem. So, for
that matter, does a general-purpose language in a much
smaller way; an ALGOL or FORTRAN user is con-
strained to think in terms of arrays and numbers, and a
COBOL user in files and records. The basic problems
of CSL style are these: deciding which classes of entities
to define and which sets to define to record their
properties in the most useful way and specifying an
exhaustive list of activities to be programmed. These
are mainly stylistic problems resembling those in arts
other than the programming art; there are therefore no
definitive solutions and every practitioner follows his
own line convinced that all other approaches are inferior.

One final point needs emphasis. Onecan write,in CSL,
aprogram which imitates a real system. By itself this step
achieves nothing more than the production of a program;
it must be preceded by the work needed to establish a
correct description of the system under study, and it must
be followed by use of the program as an experimental tool
with which possible alterations or improvements to the
design of the system can be studied. The actual prepara-
tion of a computer simulation is the central part of a
complete study, but means nothing by itself.

Acknowledgements

I wish to make acknowledgement to IBM United
Kingdom Ltd., who have supported this work on CSL,
for permission to publish this paper.

Iowe acknowledgement to many friends and colleagues,
in particular to Messrs. Blunden, Grant and Parncutt of
IBM United Kingdom Ltd., who played the major part
in the production of the compiler, and to Dr. J. G. Laski,
the co-author of the original CSL.

707 idvw 21 110 1eanB £a +ccezariet /ziciamnientifinionniion-dno-amniianeae/-ednii 1o paneoi IO

Simulations in CSL

Appendix

Sample program: A port simulation

This example is a simulation of the operation of a simple
port, which consists of an outer deep water harbourand a
series of berths. Each berth can hold one large ship,
which can only berth at full tide, or three small ships
which can also move at half tide. The tide runs in a
12-hour sequence; out for 7 hours, half-tide for one hour,
full tide for three hours and half-tide for an hour.

A distribution of unloading times for large ships is
available as data, and unloading times for small ships
are normally distributed. Inter-arrival times are negative
exponentially distributed.

The program is to record the waiting times of large
and small ships, and the times for which the berths are
empty. The purpose of the simulation might be to study
the operation as a basis for experiments to find a more
efficient way of scheduling the working of the port, or
to determine the effect that provision of extra berths
would have. The scheduling used in this model is a
simple first in—first out scheme.

PORT SIMULATION

CONTROL

CLASS TIME SHIP.100 BERTH.4
DEFINE CLASSES OF 100 SHIPS AND 4

BERTHS
SET OCEAN HARBOUR LARGE SMALL FREE
PART FULL

SET SHIPIN(BERTH)
DEFINE THE SETS REQUIRED, INCLUD-
ING AN ARRAY OF AS MANY SETS
AS THERE ARE BERTHS. SHIPIN(X)
WILL HOLD A LIST OF THE NAMES OF
SHIPS IN BERTH X.

NAME S B

INTEGER TIDE TLARGE TSMALL

TIME CHANGE ARRIVE FINISH
DEFINE TWO NAME VARIABLES, AN
INTEGER VARIABLE TO SHOW THE
STATE OF THE TIDE, AND ADDITIONAL
TIME CELLS. ALSO TWO INTEGERS TO
HOLD TOTAL ARRIVALS OF LARGE AND
SMALL SHIPS RESPECTIVELY.

HIST LARGEQ 25,25 SMALLQ 252,5
IDLE 25,2,5

HIST UNLOD 20,3,5
DEFINE THE HISTOGRAMS REQUIRED.
LARGEQ HAS 25 CELLS WITH RANGES
0-4 (MIDPOINT 2) ,5-9, 10-14 ETC.
UNLOD WILL CONTAIN THE UNLOADING
TIME DISTRIBUTION FOR LARGE SHIPS.

INITL

ACTIVITIES

TIDES ARRVL BTHL BTHS DBTH ENDNG
SPECIFY THE LIST OF SECTORS
(ACTIVITIES)

END

EXAMPLE PROGRAM

141

10

10

20

30

60

14

SECTOR INITL
T .FINISH=24000
T.CHANGE=7
T.ARRIVE=0
TIDE=0
THIS SECTOR 1S ENTERED ONLY ONCE
AND SETS UP THE INITIAL STATE OF
THE MODEL. T.FINISH REFERS TO THE
TIME AT WHICH SIMULATION IS TO
FINISH, T.CHANGE TO THE TIME AT
WHICH THE TIDE NEXT CHANGES AND
TIDE SHOWS THE STATE OF THE TIDE
AS FOLLOWS—O0 TIDE OUT 1 HALF IN
2 TIDE FULL 3 HALF IN T.ARRIVE
SHOWS THE TIME BEFORE THE NEXT
ARRIVAL OF A SHIP AT THE PORT.
FOR X = 1,SHIP
SHIP.X INTO OCEAN
FOR X = 1,BERTH
BERTH.X INTO FREE
T.BERTH.X=0
INITIALLY ALL SHIPS ARE IN OCEAN
AND ALL BERTHS FREE
READ (5, 10) UNLOD
READ IN THE DISTRIBUTION GIVEN AS
DATA.
FORMAT (14)
END

SECTOR TIDES
THIS SECTOR IS CONCERNED WITH
TIDE CHANGES
T.CHANGE EQ 0
WHICH CAN ONLY OCCUR WHEN THEY
ARE DUE
TIDE+1
GOTO (10, 20, 10, 30) TIDE
CHANGE TIDE MARKER AND RESET
TIME CELL FOR NEXT CHANGE
T.CHANGE=1
GOTO 60
T.CHANGE=3
GOTO 60
T.CHANGE=7
TIDE=0
DUMMY
AND RETURN TO CONTROL SEGMENT
END

SECTOR ARRVL
THIS SECTOR IS CONCERNED WITH
ARRIVALS OF SHIPS

T.ARRIVE EQ 0
WHICH CAN ONLY OCCUR WHEN ONE
IS DUE

707 idvw 21 110 1eanB £a +ccezariet /ziciamnientifinionniion-dno-amniianeae/-ednii 1o paneoi IO

13

15
100

Simulations in CSL

FIND S OCEAN FIRST &I5

S FROM OCEAN INTO HARBOUR

T.S=0
FIND THE FIRST SHIP IN THE OCEAN
MOVE IT TO THE HARBOUR AND ZERO
ITS TIME CELL

T.ARRIVE=NEGEXP (7)
SAMPLE THE TIME TO THE NEXT
ARRIVAL

UNIFORM (SYSTEMSTREAM) GT 0.75 &I13
S INTO LARGE
TLARGE+1

GOTO 14

S INTO SMALL

TSMALL+1

GOTO 14
A QUARTER OF THE SHIPS ARE LARGE ,
OTHERS SMALL. GO BACK TO START
OF SECTOR IN CASE NEGEXP HAS
GIVEN A ZERO SAMPLE

WRITE(6, 100) T.FINISH,CLOCK

LINGEN

1 NOT ENOUGH SHIPS IN MODEL —
SIMULATION TERMINATED

2 TIME LEFT **#*** TIME ELAPSED ***#*

T.FINISH = 0
IF A SHIP IS NOT FOUND IN OCEAN,
WRITE MESSAGE AND SET T.FINISH SO
THAT SIMULATION CEASES IN SECTOR
ENDNG.

GOTO ENDNG

END

SECTOR BTHL
THIS SECTOR 1S CONCERNED WITH
BERTHING LARGE SHIPS

TIDE EQ 2

FIND B FREE ANY

FIND S HARBOUR FIRST

S IN LARGE

THE TIDE MUST BE FULL, THERE MUST
BE A FREE BERTH AND A LARGE SHIP
WAITING IN THE HARBOUR

ENTER —T.S,LARGEQ
WHEN THE SHIP ENTERED THE HAR-
BOUR ITS TIME CELL WAS SET TO ZERO.
SINCE THEN IT HAS BEEN REDUCED
AT EACH TIME ADVANCE AND SO —T.S
IS THE WAITING-TIME OF THE SHIP.
THIS IS RECORDED IN THE HISTOGRAM

B FROM FREE INTO FULL

S FROM HARBOUR INTO SHIPIN(B)
THE BERTH IS NOW FULL AND THE
SHIP MOVES FROM THE HARBOUR
INTO THE BERTH

ENTER —T.B,IDLE
JUST AS —T.S SHOWED THE SHIPS
WAITING TIME SO —T.B SHOWS THE
BERTH IDLE TIME

142

20

16

T.S=SAMPLE(UNLOD)
SAMPLE AN UNLOADING TIME FOR
THE SHIP
RECYCLE
CAUSE ANOTHER PASS THROUGH THE
SECTORS (BECAUSE MORE THAN ONE
SHIP MIGHT BERTH AT THE SAME TIME)
END

SECTOR BTHS
THIS SECTOR IS CONCERNED WITH
BERTHING SMALL SHIPS. T IS
OMITTED FROM THIS EXAMPLE AS
THE STATEMENTS IN IT ARE SIMILAR
70 THOSE IN THE PREVIOUS SECTOR.

SECTOR DBTH
THIS SECTOR IS CONCERNED WITH
DEBERTHING
TIDE NE 0
THE TIDE CANNOT BE OUT
For X = 1, BERTH
DEAL WITH EACH BERTH SEPARATELY
IN TURN
FIND S SHIPIN(X) FIRST
T.S LE 0
CHAIN
S IN SMALL
OR S IN LARGE
TIDE EQ 2
DUMMY
FIND A SHIP IN THE BERTH WHICH 1S
READY TO LEAVE (TIME CELL HAS
BEEN REDUCED TO ZERO OR BEYOND
BY TIME ADVANCE) AND WHICH CAN
DO SO AT THE PRESENT STATE OF THE
TIDE. IF NONE — GO ON TO TRY THE
NEXT BERTH
RECYCLE
SET RECYCLE SWITCH TO TRY SECTORS
AGAIN BEFORE TIME ADVANCE (IN
PARTICULAR BERTHING SECTORS MAY
NOW SUCCEED)
S FROM SHIPIN(X) INTO OCEAN
S IN LARGE &I6
S FROM LARGE
T.BERTH.X= 0
BERTH.X FROM FULL INTO FREE
GOTO 15
IF SHIP LEAVING IS LARGE BERTH IS
NOW FREE. ZERO ITS TIME CELL SO
THAT IDLE TIME CAN BE COMPUTED
LATER. THEN GO TO NEXT BERTH.
S FROM SMALL
SHIPIN(X) EQ 0 &17
BERTH.X FROM PART INTO FREE
T.BERTH.X=0
GOTO 15
SIMILARLY IF SHIP LEAVING IS SMALL

&l15

707 idvw 21 110 1eanB £a +ccezariet /ziciamnientifinionniion-dno-amniianeae/-ednii 1o paneoi IO

Simulations in CSL

AND NOW THERE ARE NONE LEFT IN
THE BERTH.
17 SHIPIN(X) EQ 2 &20

BERTH.X FROM FULL INTO PART

GOTO 20
IF SMALL SHIP IS LEAVING AND BERTH
WAS PREVIOUSLY FULL, RECORD FACT
THAT IT IS NOW ONLY PARTLY FULL
IN EITHER CASE GO BACK TO SEE IF
ANY MORE SHIPS ARE READY TO
LEAVE THIS SAME BERTH

15 DUMMY
DUMMY
END

References

BuxTON, J. N., and Laski, J. G. (1962).

SECTOR ENDING
THIS SECTOR 1S CONCERNED WITH
OUTPUT OF RESULTS

T.FINISH EQ 0
WHICH IS TO BE DONE AFTER TIME
HAS BEEN ADVANCED SO THAT T.
FINISH HAS BECOME ZERO

THE REST OF THE SECTOR CONSISTS OF
OUTPUT STATEMENTS AND IS OMITTED.
STOP

END

“Control and Simulation Language,” The Computer Journal, Vol. 5, p. 194,

CSL Reference Manual (1962), IBM United Kingdom Ltd. and Esso Petroleum Co. Ltd.
Laski, J. G. (1965). “Using Simulation for on-line decision-making,” presented at the NATO Conference on the role of digital

simulation in O.R., Hamburg, September 1965.
CSL Reference Manual (1965), IBM United Kingdom Ltd.

Book Reviews

Switching Theory, by R. E. Miller. Vol. I, Combinational
circuits, 1965; 351 pages. Vol. 11, Sequential circuits and
machines, 1966; 250 pages. (London and New York:
John Wiley and Sons Ltd., 98s. and 87s.)

There exists considerable uncertainty in the computer design
world as to whether switching theory is properly a pursuit for
mathematicians or engineers. Although there are those,
including the reviewer, who believe that too mathematical a
motivation is a widespread fault in the literature of this sub-
ject, it is an undeniable fact that progress cannot be made in it
without recourse to a considerable range of mathematical
methods. Probably only one previous book (Caldwell,
1958, Switching circuits and logical design, Wiley) can fairly
be claimed to have given a thorough treatment from a largely
engineering standpoint, and so much new material has emerged
since then that there was a definite need for a more up-to-date
text. Dr. Miller’s two volumes appear to satisfy that need
to a great extent, and whilst couched in quite rigorous mathe-
matical form, nevertheless display strong awareness of the
engineer’s requirements.

In his preface the author states that the books were written
primarily for ““advanced undergraduate and graduate study”
and if this is so we in this country can only marvel at and
admire the high standard of knowledge in this rather special-
ized corner of the electrical engineering field expected of even
advanced undergraduates in America. These volumes, par-
ticularly the second, contain details of ideas and methods
which have appeared in technical journals only during the
past two or three years, and which can by no means be con-
sidered as completely developed.

Volume I on combinational circuits commences with a
general discussion of digital systems, as a sort of fors d’oeuvre,
which is the best of its kind the reviewer has seen. Chapter 2
develops the idea of abstract Boolean algebras and shows how
such an algebra having only two elements relates to the re-

143

quirements of switching circuits. It includes also a brief
discussion relating Boolean algebra to group and lattice
theory, a section on graphical and cubical function represen-
tation, one on some special groups of functions (symmetric,
unate, threshold) and one on functional decomposition. This
chapter also is admirable both in coverage and treatment.
The remaining three chapters deal thoroughly with normal
form design, multi-output and multi-level circuits and bilateral
networks, respectively. There are one or two grounds for
criticism in this volume; first is the complete omission of any
serious consideration of the important NOR and NAND
universal decision functions, round which most modern
computers are designed; second is the almost exclusive use in
Chapters 3 and 4 of the somewhat unfamiliar cubical repre-
sentation of functions. All the known methods of represen-
tation and minimization of functions are fundamentally
similar and share a common failing in that the visualization of
functions of more than a few variables is extremely difficult.
If anything the cubical representation is worse than others in
this respect and apart from a few special concepts (e.g. that of
linear separability of threshold functions) does not appear to
offer any great compensating advantages over, for example,
a purely algebraic approach. Dr. Miller's preoccupation
with the cubical approach causes him to give only cursory
attention to the widely used graphical (e.g. Karnaugh map)
and tabular (Quine-McCluskey) procedures.

This volume contains a number of typographical errors,
which are not serious, and a few mistakes and omissions
sufficiently serious to cause temporary confusion. For
example on page 33 the symbol x, is suddenly redefined as a
dividend after it has been used for three pages to mean the
sign bit of a binary number. Again on pages 110 and 111,
two partially ordered lattices are apparently upside down,
since the vertices quoted as being least are in both cases at the
top. A final example is on page 146, where o is used without

(Continued on p. 166)

707 idvw 21 110 1eanB £a +ccezariet /ziciamnientifinionniion-dno-amniianeae/-ednii 1o paneoi IO

