
The COMPL language and operating system
By A. G. Fraser* and J. D. Smartf

A description is given of the Compiler and Operating System used in the preparation of the
NEBULA compiler for the I.C.T. Orion computer. The article describes the facilities available
within the system, but does not go into any detail concerning the actual implementation of the
system.

1. Introduction

The NEBULA compiler for the I.C.T. Orion computer
(Braunholtz, 1961) is probably one of the largest soft-
ware projects yet undertaken outside the United States.
The compiler itself contains about 250,000 words of
program, and was written by a group which, at the later
stages, contained some 28 programmers. At an early
stage in the design of the compiler it was realized that
it would be necessary to employ a compiler if the task
were to be completed successfully. In practice the early
decision to use the computer as a tool in the preparation
of the NEBULA compiler has been the one main feature
without which the compiler would certainly have failed.

The early problems of technical design were later
enhanced by the needs of a group of programmers work-
ing on a common program. This latter situation led to
the need for extensive standardization in all aspects of
program writing, development and maintenance. Every
effort was necessary to ensure compatibility between the
various components of the one program, and to this had
to be added the controlled flexibility needed to develop
and assemble the component parts of the system. These
considerations gave rise to the design of an operating
system which contained, and was integral with, the
compiler group's own compiler.

The source language used by the NEBULA team is
called COMPL and it is this specially designed language
and associated operating system which is described here.

The COMPL system was designed so that it could be
used in the final NEBULA compiler itself. The total
integration between the two systems has led to a number
of operating inefficiencies, but it has significantly assisted
both the development and maintenance of the NEBULA
compiler. The design of the COMPL language itself
reflects the needs of the NEBULA compiler, and for
this reason it must be regarded as a special-purpose tool.
In spite of this the language, and indeed the entire
system, possess properties which could make it interesting
to other groups.

No creation, when it eventually emerges, will satisfy
its creator, and the tortuous history of development
which the COMPL system has undergone during the past
four years has left it in a form that leaves much to be
desired. The reader must therefore regard it as a well-
worn tool which was designed to do a specific job of
work.

2. The COMPL system

The COMPL system and its compiler are integral parts
of a whole, and consequently the language which is used
for program preparation merges with the language of
directives that control the system. No clear boundary
can, therefore, be drawn between the two components.
For the purposes of this article the individual procedure
statements in a COMPL procedure (or subroutine) will
be described under the heading of the COMPL pro-
gramming language, and all else will be given under the
heading of the COMPL system.

The system itself is built around its storage organiza-
tion and it is the latter which is the subject of a major
part of the hidden complexity in the systems programs.
The principal storage space "known to the user" is a
large single-level store of about 256,000 words of 48 bits
each. This store is commonly referred to as the "data
store."

The entire configuration comprising system program
and store is best thought of as having a continuous
existence. When the system is not actually running on
the computer it is held on magnetic tape in the form
which it last reached. The process of unloading the
system program and data onto magnetic tape is known
as dumping and the process of re-establishing the system
on the computer is known as restoring. The system can
be dumped under operator control at any time.

Overall control of the system is achieved by means of
a series of directives which are read into the machine
from paper tape. The system reads one directive and
then carries out the action requested before reading the
next directive. One such directive is:

PERFORM Test Program; BEGIN 2.

This directive instructs the system to find the procedure
called Test Program and enter it at entry point 2. There
is no STOP instruction in the system but all procedures
terminate with the EXIT statement which causes control
to return to the higher level. In the case of the above
example control returns to the operating system when
EXIT is obeyed in the test procedure. The system will
then proceed to read and obey the next directive from
paper tape.

In exceptional circumstances the operator may inter-
rupt the operation of the system by typing a message on

* I.C.T. Ltd., Bracknell, Berks, (now at University Mathematical Laboratory, Corn Exchange St Cambridge)
t I.C.T. Ltd., Bracknell, Berks.

144

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/2/144/623346 by guest on 13 M
arch 2024

COMPL

the console Flexowriter. This message causes the
system to halt the current job, whatever it might be,
and to read and obey one directive typed on the console
Flexowriter. Having performed the requested action
the system continues with the job previously interrupted.

The directives that may be given to the system are
many and varied but one whose effect has already been
described is DUMP. The other directives that are
available are listed in Section 6. One important directive
which should be mentioned here, however, is the COMPL
procedure. The system treats an entire procedure as if
it were one directive, and the effect of carrying out this
"pseudo-directive" is to compile the procedure and to
store it within the system. Having this way "defined" a
new procedure the user is free to call upon it in any way
he wishes.

When a procedure is compiled the object code sub-
routine is left in the data store from where it can be
obeyed if necessary. However, this is not usually its
final resting place since there is a second storage area
reserved and designed specifically for program. This
second store is the CHAPTER store. In this second
store COMPL object program is stored in 512-word
chapters, and it is from the chapter store that a procedure
is more frequently obeyed.

The process of clearing out procedures from the data
store and putting them into chapters is initiated by the
directive UPDATE. This is effectively a "spring
cleaning" operation which is usually done at regular
intervals. Much effort has been put into the design of
the system in an attempt to make it do that which is
expected of it even in extreme circumstances. One
example of this is the fact that a procedure can be
executed whether or not an update has been done since
it was compiled, in spite of the fact that the two modes
of execution are vastly different from an internal view-
point. The extra effort required to implement this policy
of rigid adherence to a uniform design has been proved
repeatedly to be sound and, indeed, many cases of
common failure can be traced to points where this policy
has not been properly carried out.

There is a group of directives which are available to
the COMPL programmer which enable him to use and
test the compiled procedure. PERFORM is a directive
that has already been mentioned, and the other directives
are directly linked to this. The directive NEST allows
the user to set up the 7 nest words (working-space
registers described in Section 3) and this setting will
apply when the next PERFORM is obeyed. MONITOR
is a directive which allows the user to make use of the
trace and check-point monitoring facilities that have been
built into the system.

There are two trace facilities available.

(a) The system will print one line on the monitoring
peripheral whenever a PERFORM or EXIT is
obeyed.

(b) The system will produce a train of symbols on the
monitoring peripheral which describe the path

taken by the object program. Since the user does
not usually know the details of the object code
this trace is in terms of the source language
branching in the original COMPL version. A
single letter (N for NO or Y for YES) is printed
each time that a COMPL source language con-
dition is evaluated. G is printed if a GO TO
statement is obeyed, and the program address of
a labelled sentence is printed whenever such a
sentence is obeyed.

The check-point monitoring facility relies upon check
points written by the programmer in his original COMPL
version of the program. This, in fact, has proved to be
the weakness of the system, and it would have been
much more valuable had it been possible to insert check
points after the procedure had been compiled. Never-
theless the facility does provide a useful range of printing
styles that can be output on the monitoring peripheral.
The adequacy of this facihty is demonstrated by the way
that check-point monitoring has been used regularly in
place of the other methods of output for test results.
The design of this facility was assisted materially by the
discipline which was imposed on programmers in the use
of the store, most data being held in a standard and
recognizable format.

The MONITOR directive itself sets up the styles of
monitoring which apply when the next PERFORM is
obeyed. In addition to the style of printing the user can
monitor on selected procedures and suppress any
monitoring action on the others.

The remaining directives fall into four major groups.
(a) Directives for the administration of the compiled

procedures (e.g. CHAPTER which allocates a
specified procedure to a specified chapter in the
chapter store).

(b) Special facilities developed directly in association
with the NEBULA compiler. These are aids to
the administration and development of the
NEBULA compiler while being assembled.

(c) Directives which operate on and in terms of the
COMPL object program and data store (e.g.
LTST allows the user to read a list structure into
the data store).

(d) Directives for "class definition." (See Section 5 for
a description of this specialized part of the system.)

3. The storage system
There are principally three components to the COMPL

storage system. These are:
(a) the data store
(b) the nest
(c) the chapter store

The data store contains about 256,000 words which
are addressed by the integers starting at 4096. The
content of word 12305 is referred to as W(12305) so
that the statement SET W(12305) = 26 causes the
integer 26 to be set up as the value contained in word

145

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/2/144/623346 by guest on 13 M
arch 2024

COMPL

12305. Similarly to negate this we write SET
W(12305) = —W(12305).

In addition to the data store there is a small store of
seven words known as the nest. These words are
referred to by the integers 0 to 6 inclusive, and the
content of nest word 6 is written as N(6).

An extension to the notation described above allows
a reference to the data store to be written as W(N(5))
or even as W(W(W(N(5)))) where the number of the
data store word referred to is to be taken as the value
of the item specified within the brackets.

Both the nest and data store can be referred to in
assignment statements and conditions, but there are also
special procedure statements which are associated with
the special roles played by these two stores.

Associated with the nest are the statements PUSH
DOWN and POP UP. The actions of these statements
associate the nest with a "stack" of copies of the nest.
Each level in the stack contains one copy of each of the
seven nest words, and a new level is made in the stack
when the PUSH DOWN statement is obeyed. PUSH
DOWN does not change the content of the seven nest-
words but merely arranges to place a copy of the nest
onto the top of the stack. POP UP ALL has the reverse
effect and copies from the stack to the nest before
removing the top layer of the stack. The statement

POP UP 0 ; 1 ; 2 ; 6

causes only N(0), N(l), N(2) and N(6) to be reset from
the stack although the entire top level, consisting of all
seven words, is removed from the stack.

The administration of the data store is the responsi-
bility of the operating system, and each COMPL
program is expected to communicate with the system
when changing its store requirements. For this purpose
the FIND and FREE statements are provided. No
program may use any part of the data store which has
not been allocated to it by the system, and it is also the
program's responsibility to tell the system when it has
finished with a particular segment of store.

The statement FINDR BLOCK 6 INTO N(2) will
cause the system to allocate 6 words of data store to
the program and the number or "address" of the first
of the 6 words is placed in N(2). Thus the program
may now assign the value 3 to the first and last of these
words by writing

SET W(N(2)) = 3 THEN SET W(N(2) + 5) = 3.

When finished with, these words of store are relinquished
by writing

FREE N(2) ; BLOCK 6.

To obtain a measure of efficiency in an otherwise
random system of store allocation one may write

FINDR BLOCK 6 INTO N(2) ; NEAR N(3)

which tells the system that an increase in running speed
is to be expected if the 6 words allocated to the program

M L T B A

1 9 2 18 18

Fig. 1.—The list word format

are physically near the data store word whose address
is in N(3).

Since the locations in the data store are allocated by
the system and not by the programmer there is a system
of symbolic addresses available to the program writer.
A data store address can be represented by a label
such as LE6 or LA2. The data in the store can then
be referred to by writing, for example, W(LA2 + 9).
The system will handle any program that contains a
reference of this type and when, ultimately, a data store
address is assigned to that label then the appropriate
value is written into the COMPL program.

The word length employed throughout is 48 bits, and
for many purposes it is the programmer who decides
how he will store his data. However, the COMPL
system is specially organized to handle one particular
format and this format is known as the list word. A
list word is a 48-bit word sub-divided as shown in Fig. 1.
The COMPL programmer may refer to the five sub-
fields of a word directly. For example, NA(2) refers to
the 18-bit subfield called A in the nestword N(2).
Similarly one may refer to WT(N(3)). The A and B
fields will usually hold the addresses of other list words
and the M and T fields have conventional meanings
which are associated with A and B, respectively.

A main chain, for example, is a set of list words in
which the first contains the address of the second in its
A field, the second contains the address of the third in
its A field and so on. (See Fig. 2.) The last word in a
main chain is recognizable because it has M = 0,
whereas all other words in the chain will have M = 1.
The address of the main chain is the same as the address
of the first word on the chain.

The interpretation of the B field depends upon the
value of T. Commonly, B will contain the address of
some other main chain, and in this case T will be either
0 or 2. If T = 3 then B will be a single data field and
will not usually be the address of another list word.
The value T = 1 is used when a large volume of data
has to be associated with one list word, and in this case
the following B words will contain these data. The L
field has no special meaning but can contain any data.
The programmer may thus form his own complex pattern
of interconnected list words. Such structures are
normally referred to as tree structures. In the tree
structure shown in Fig. 3 the shaded areas represent
data which have no special effect on the shape of the
tree structure itself.

1 • - 1 0

Fig. 2.—A main chain

146

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/2/144/623346 by guest on 13 M
arch 2024

COMPL

1'iH.l H-

Fig. 3.—A tree structure

There are special instructions which can be used only
on list words and tree structures since they assume that
the conventions described above are adhered to. For
example FREE N(3); TREE is equivalent to using
FREE ; BLOCK on every entry in the tree whose
address is in N(3).

The language also includes functions which operate
upon tree structures. One such function is LABELW
as in

SET N(3) = LABELW [6 ; N(2)]

The action of this statement is to search the main chain
whose address is to be found in N(2) and to find the
first list word on the chain for which L = 6. The
address of this list word is then put into N(3). If there
is no word with L = 6 on the specified main chain
then N(3) will be set to zero.

The third level of store is the chapter store which is a
series of 512-word blocks of chapters. Each chapter
contains an integral number of procedures and is used
solely for this purpose; the COMPL programmer may
not use any part of a chapter as working space. The
user, in fact, knows very little about the chapter system
and in general he is only concerned with the allocation
of specific procedures to chapters. This latter chore is
not done automatically since it materially affects the
running speed of the system, and no simple mechanical
system for producing an optimum solution to this
problem was found.

4. The COMPL programming language
The NEBULA compiler is built up from about 1,000

individual subroutines, most of which were compiled
from COMPL. These subroutines were written and
tested independently by the different members of the
team. To avoid administrative difficulties and accidents
all procedures have equal priority in the system and all
must adhere to the same protection rules. In particular
every procedure must have a unique name, it must have
no more than four declared entry points, and no pro-
cedure can enter another except at a declared entry
point. Storage protection for data between one pro-

COMPILING PROCEDURE [count words]
[Begin 0]

SET N(3) = 0.
[Begin 1]

IF N(2) = 0 THEN EXIT.
[L]

SET N(3) = N(3) + 1.
IF WT (N(2)) = 1 THEN SET N(3) = N(3) + WB(N(2))
OTHERWISE If WT(N(2)) =£ 3

THEN PUSH DOWN
THEN SET N(2) = WB(N(2))
THEN PERFORM count words; Begin 1
THEN POP UP 2.

IF WM(N(2)) = 1 AND WA(N(2)) =£ 0
THEN SET N(2) = WA(N(2))
THEN GO TO L.

EXIT.
END OF PROCEDURE.

Fig. 4.—A COMPL procedure which counts in N(3) the
number of words held in a tree whose address is held in N(2)

cedure and another is facilitated by the free store
mechanism in the data store and by the PUSH DOWN
mechanism for the nest. As a discipline aimed at a
healthy programming style, procedures are restricted in
length to a maximum of about 500 words of object code.

The format of a COMPL procedure is illustrated in
Fig. 4. It will be seen that the name of the procedure
is given in the heading, and the entry points are marked
by writing as program labels. The principal syntactic
unit is the sentence which may consists of one simple
statement or may be conditional as illustrated by the
fourth and fifth sentences in Fig. 4. Most statements
in the example will be self explanatory once the user
has acquainted himself with the method of referring to
data. The interpretation of a conditional sentence is
such that only one sequence of statements is obeyed,
and this sequence is that which follows the first true
conditional expression. Conditions are formed using
the symbols = , ¥=, >, >, < and < and are com-
pounded using AND and OR. Arithmetic expressions
may be used almost anywhere that an integer is per-
mitted. All expressions are evaluated using integer
arithmetic and may use the symbols + , —, *, /, <+>
(logical OR), <*> (logical AND), and <^> (logical not
equivalent). Sub-expressions may be written in paren-
thesis if required.

Certain functions are also available in the language
and these may appear as the operand in any arithmetic
expression. All functions are specified by the function
name, and the operands, which are listed after the
name, are enclosed in brackets thus:

LABELW [2 ; N(6)]

This particular function searches a list and, indeed,
most COMPL functions are non-arithmetic in this way.
All, however, produce a single integer result.

The selection of functions and statements which are
to be found in the language fall into the following

147

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/2/144/623346 by guest on 13 M
arch 2024

COMPL
DEFINE CLASS sentence: 8 = IF: Condition: THEN: action,

alternative ?
TO USE condition comp
OR statement, extra statement...

TO USE
Statement comp.

DEFINE CLASS alternative: 9 = OTHERWISE: Sentence.

DEFINE CLASS extra statement: 10 = THEN: statement.

DEFINE CLASS action: 11 = statement, extra statement . . . TO
USE

Statement comp.

Fig. 5(a).—Class definition of a sentence

groups and reflect the fact that the language is a special
purpose tool designed for one particular purpose,

(a) Facilities required in any procedural language
(e.g. simple assignment, control transfer and sub-
routine execution).

{b) Facilities required to communicate with the
storage system (e.g. FIND, FREE, PUSH DOWN
and POP UP).

(c) Facilities aimed at handling COMPL tree struc-
tures (e.g. LABELW and FREE TREE).

(d) Facilities introduced as special macro operations
because they appear frequently in the NEBULA
compiler.

(e) Facilities associated with Syntax analysis. (See
Section 5).

A full list of the procedure statements and functions
is given in Section 6. The facilities, under heading (d),
which were designed specifically for the NEBULA
translation process have not been included because they
must be discussed in the much larger subject of the
NEBULA translation itself. Some facilities which
should strictly come under {d) have been isolated and
are discussed in detail in Section 5. This is because the
process of syntax analysis itself may be of more general
interest.

5. Syntax analysis
Both the NEBULA and the COMPL compilers

employ the same first stage of compilation which is
referred to as syntax analysis. The COMPL system
includes a general purpose syntax analysis program
which matches a sample sentence against a set of
syntactic rules which are held in the store as a tree
structure and is similar to a scheme devised at Manchester
for Atlas 1 (Brooker, 1960). These rules are referred
to as FORMAT TREES and define the form of a
correctly constructed sentence.

The format tree is in practice a COMPL tree structure
but there is an equivalent written form which is called
a class definition. Each format has a name which is the
class name, and the class definition is in effect the
source language for a compiler that produces format
trees in lieu of object program.

In Section 2 it was stated that the COMPL system
automatically translated any procedure that was pre-
sented to it. This is also true for any class definition

: 1̂Sentence : 8 — X •

Condition :• 6 — X

Action : II — X

Statement : 7 - X - • (SET C s p)

Extra
Statement : 1O

1
Alternative : 9 • X

| STATEMENT COMp|

Statement ; 7 - X —»• (GO TO E J

[CONDITION COMP I

Sentence : 8 — X

I f A = B t h e n se t C = 0 t h e n go to E o t h e r w i s e go t o F

Fig. 5(b).—Analysis tree for a sentence

except in this case a format tree and not a procedure is
stored in the data store.

A class definition is illustrated in Fig. 5(a). In this
example a definition is given for the class SENTENCE
in terms of the simpler concepts of STATEMENT and
CONDITION. Having compiled the definition of the
class SENTENCE and all the classes which that
definition requires (e.g. CONDITION and STATE-
MENT) the program can use a standard subroutine to
test any sequence of input source language to see if it
is a valid sentence. If it is valid then an analysis tree
is produced which contains in its shape an interpretation
of the original source language. It is this analysis tree
which both the NEBULA and COMPL compilers use in
their respective translation processes. The analysis tree
is a COMPL tree structure and a pictorial representation
of part of such a tree is shown in Fig. 5(b).

Since analysis trees and their manipulation are
common features in the NEBULA compiling process
certain conventions are used and special facilities are
available to handle these trees.

A statement specially designed for producing an
analysis tree is GEN. For example:

GEN Sentence = {If A = B then set C = D then go
to E otherwise go to F} INTO N(l).

This statement generates the tree shown in Fig. 5(b)
and puts its address in N(l). An important refinement
to this facility is shown in the following example:

GEN Sentence = {If Condition [N(2)] then set
C = D} INTO N(l).

In this case it is assumed that a COMPL procedure
has previously put the address of the analysis tree for

148

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/2/144/623346 by guest on 13 M
arch 2024

COMPL

COMPILING PROCEDURE [condition comp]
[Begin 0] PUSH DOWN THEN SET NB(5) = NB(5) + 1.

SET N(l) = WB(N(1)).
PERFORM PROCEDURE (ETB[W(N(1))]).
IF NM(6) = 1 THEN GO TO fail.
SET N(l) = WA(N(1)) THEN PERFORM PRO-

CEDURE (ETB[W(N(1))D-
IF NM(6) = 1 THEN GO TO fail.
IF WM(N(1)) = 0 THEN EXIT.
SET N(l) = WB(WA(N(1))).
PERFORM PROCEDURE (ETB)[W(N(1))]).

[fail] POP UP 1;2;3;4;5 THEN EXIT.
END OF PROCEDURE.

Fig. 5(c).—A COMPL procedure showing a method of con-
trolling the compilation of a conditional sentence, defined by
the definitions in Fig. 5(a). On entry N(l) is the address of
the analysis tree of such a sentence and NB(5) is the current
value of a branch count, i.e. a count of the number of conditional
sentences found connected by OTHERWISE. In this case the

procedure would use itself recursively

a condition in N(2) and now wishes to generate a
sentence embodying this condition. The use of a class
name as a function in this way is known as a parameter.

By convention, in any analysis tree the terminal A
field of a main chain (i.e. the A field of the word with
M = 0) can indicate the procedure to be used to process
this chain. This information is compiled into the
corresponding FORMAT TREE by the TO USE
option on a class definition as shown in Fig. 5(a), the
effect on the analysis tree being shown in Fig. 5{b).
This information is easily obtained from an analysis
tree by use of the function ETB, as in

SET N(2) = ETB [W(N(1))].

This function requires as its operand a whole word and
if the T field of the given word is three then the value
of the function is the B field of this word. If the T field
is two or zero then the B field is taken to be the address
of a main chain and the value of the function is then the
value of the terminal A field of this main chain. Thus, if
in the above example N(l) is the address of the analysis
tree for the Sentence shown in Fig. 5(b) then N(2) will
be the address of the procedure Condition Comp.
Furthermore, if this statement is followed by the state-
ment "Perform procedure (N(2))" the procedure
Condition Comp will be entered with N(l) giving the
address of the analysis tree to be processed. As an
example of this Fig. 5(c) shows a method in which the
procedure Condition Comp could compile, using an
analysis tree produced from the definitions in Fig. 5(a).

This facility provides a valuable switching mechanism
which is controlled by the source language.

An important extension to this facility is given by the
COMPILE statement, as in:

COMPILE Sentence = {If A = B then set C = D then
go to E otherwise go to F}.

This statement is equivalent to the statements

PUSH DOWN.

GEN Sentence = {If A = B
then set C = D
then go to E
otherwise go
to F} INTO

PUSH DOWN THEN PER-
FORM PROCEDURE

POP UP 1;2;3;4;5 THEN
FREE NA(1); TREE.

POP UP 1;2;3;4;5.

Note that this sequence assumes that N(0) and N(6)
will be changed by the compilation involved and, in
fact, they are expected to indicate the results of the
compilation.

A COMPILE statement, like GEN, allows the use
of parameters.

These facilities in the COMPL programming language,
together with the ability to compile new class definitions
provide a system which is easily extended and is a
potentially powerful mechanism for handling character
strings.

One rather specialized example of the use to which
this device can be put should perhaps be mentioned
here. This is the class MESSAGE which is used solely
in GEN and COMPILE statements to produce messages
for output. Besides accepting a text in plain language
it allows the text to be given in a parametric form as
shown in the following example:

COMPILE message = {error in Identifier [N(2)] at
sentence Number [N(5)] — Mes-
sage [N(6)]}.

This example assumes that N(2) contains the address of
the analysis tree of an Identifier, e.g. a NEBULA
source language name, that N(5) contains an integer,
and that, previously, a message had been GEN'd into
N(6). Thus, if N(2) points to the analysis tree of the
name "FRED" and N(5) = 10 and N(6) had been set up
by the statement "GEN Message = {incorrect format}
INTO N(6)", the execution of the above COMPILE
will produce the message:

ERROR IN FRED AT SENTENCE 10—INCORRECT
FORMAT

6. Summary of directives, statements and functions

6.1 COMPL directives

WAIT
This terminates a paper tape and instructs the

system to disengage the tape reader and then call for
a further paper tape.

149

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/2/144/623346 by guest on 13 M
arch 2024

LIST
0
11
LA8

LA7

COMPL
LA6

0
2
12
13

E N D
15
E N D

1234

3
0

14
E N D

0
3
0

LA7

3 4567
1 0
LA6
9876
999

LA6

1 0 0 1234 — 1 11 2 i • -

LA7
0 15 3 9876 999

1 12 3 LA7 • - 0 13 0 i LA6

LA8

Fig. 6(a).—Input of a tree structure using LIST directive

1 14 3 4567 0

DUMP AGF 3
This instructs the system to make a complete dump

of itself on a magnetic tape called
NEBULA/DUMP/AGF/3

UPDATE AGF 3
This directive instructs the system to carry out the

"spring-cleaning" operation which updates the chapter
store in the light of all changes that have been made
since the last update. The operation terminates with
a dump.

READ NEBULA/TESTS/272/-
This directive instructs the system to suspend

reading from the current paper tape without unloading
it, and to search for another paper tape on a separate
reader. The new paper tape will have the heading
DOCUMENT NEBULA/TESTS/272. When the
system has finished reading the newpaper tape it returns
to the one on which reading had been suspended.

END
This directive terminates a secondary paper tape

and causes the system to return to the primary tape.
(See READ.)

SET LA2 = 123
This directive allows the user to make an explicit

label setting. A more advanced form of this is
frequently useful: SET LA2 = LA5 A2 B causes
LA2 to be set to the value WB(WA(WA(LA5))).

FREE LA2
This clears a label setting and allows that label to

be used again.
LIST LA6

This directive is the first line of a tree structure and
the system is asked to store a copy of that tree
structure in the data store. The label LA6 will then
be set to be the address of the first word in this tree.

The directive is followed by the list words punched
one per line usually as 3 integers representing the L,
T and B fields. The words in the tree are automatically
linked together by the system with the appropriate
settings for M and A. The terminal M and A values
for any one branch of the tree are specified as integers
on the line which begins END. If T = 2 then the
subsidiary main chain can follow immediately and the
B field will be filled in by the system.]f T = 1 then
the contents of the block of B words must be specified
on the following lines. An example of a LIST directive
is given in Fig. 6(a).

FREELIST LA6
This directive frees the store used by the tree

structure whose address is given by LA6.

ALTER LA6 A3 L
This directive allows the content of one data store

field to be changed. In this case the field to be
changed is WL(WA(WA(WA(LA6)))) and the new
value of this field will be given on the line following
the ALTER directive.

MONITOR TRACE PROG A/PROG B/PROG C
This directive specifies the style of monitoring to be

used when a subsequent PERFORM directive is
obeyed. The directive can specify two different
monitoring styles, and for each a list of procedures on
which this monitoring should take place is given. The
two styles are TRACE and CHECKPOINT.

PERFORM TEST PROG: BEGIN 3 and PETRACE
This directive instructs the system to obey the

procedure called TEST PROG at entry point 3.
While doing this it should trace all PERFORM and
EXITS. Alternatively the directive can specify
"AND CHECKPOINT". In this case procedural
monitoring is switched on and those procedures

150

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/2/144/623346 by guest on 13 M
arch 2024

COMPL

mentioned in a previous MONITOR directive will
produce the monitoring specified when obeyed.

NEST N(l) = 2
N(2) = LISTW [O|2|3|LA2|O]

This directive instructs the system to set up the
nestwords as specified and to store these values for
use on execution of the next PERFORM directive.
In this case N(0), N(3), N(4), N(5) and N(6) are
cleared and N(l), N(2) are set up as specified (see
function LISTW for setting of N(2)).

This is a useful directive for testing procedures in
isolation and this, with the LIST and monitoring
facilities, provide a comprehensive development aid.

6.1.2 Administration of COMPL procedures

COMPILING PROCEDURE [count words]
An example of a COMPL procedure is shown in

Fig. 4, and the operation of this directive is to cause
such a procedure to be compiled. The compilation is
terminated by END OF PROCEDURE. If any
errors are found during compilation the system
completes the current pass of compilation in order to
find the maximum possible number of errors and then
leaves the procedure in a cancelled state.

COMPILE FROM Nebula/Compl/Lib/AGF/1/Test-
proc/-

In order to improve the speed of COMPL compila-
tion an off-line job can be used to carry out the syntax
analysis of a COMPL procedure. This job uses the
same syntactic rules as the COMPL system but the
resultant analysis trees are stored on magnetic tape.
The COMPL system can be directed to compile,
from this form of input data, by using the
COMPILE FROM directive. In the above example,
the analysis trees for the procedure identified as
Testproc are retrieved from the magnetic tape called
Nebula/Compl/Lib/AGF/1 for compilation. The off-
line job provides a fast system for syntax checking
a COMPL procedure before compilation.

CANCEL Prog A/Prog B/Prog C
This directive cancels an unwanted procedure. It

removes all the object program compiled for these
procedures, in this case Prog A, Prog B and Prog C,
and leaves them marked as "referred to but not
compiled yet".

ERASE Prog A/Prog B
This directive removes all trace of procedures from

the system, and is used to erase procedures that are
no longer required or that have been incorrectly
named. In the above case procedures Prog A and
Prog B will be erased.

REFLIST Prog A = ADD Prog B THEN REMOVE
Prog C

For the purpose of improving the running speed

of COMPL programs each procedure has associated
with it a list of the procedures which it performs.
This list is usually constructed during compilation
and the REFLIST directive is used in certain circum-
stances to make additions and corrections. The
directive, in the above example, will cause procedure
Prog A to record that it now refers to Prog B but
no longer refers to Prog C.

CHAPTER abed = ADD Prog A AND Prog B THEN
REMOVE Prog C THEN ASSEMBLE

In the chapter store each 512-word block, or
chapter, is identified by a four-character name, e.g.
abed as shown above. A chapter directive operates
on the single chapter specified by the name given.
In the above example procedures Prog A and Prog B
are assigned to the chapter abed and the procedure
Prog C, which was previously assigned to this chapter,
is now removed from it. Finally, the system is
instructed to assemble this chapter in the chapter store.
The operations requested by chapter directives are
held over by the system and the actual changes to the
chapter store only take place when an UPDATE
directive is given. If a change has been made to a
procedure that is in a chapter, e.g. it has been
CANCELLED or compiled, or a CHAPTER directive
specifies some change to a chapter, as above, then the
UPDATE directive will automatically "dismantle"
the chapter, and after the necessary changes have been
made, the chapter will be "assembled".

Since chapters are stored serially in ascending values
of chapter names the situation can arise whereby a
chapter stored in one section of the chapter store is
required by other chapters which are physically
distant from it. To overcome this a copy is made of
a chapter containing frequently used procedures, and
the copy is placed near to those procedures that use it.
This is done by the COPY OF directive as in
CHAPTER xyz3 = COPY OF abed.

6.1.3 Directives for class definitions

DEFINE CLASS alternative : 9 = OTHERWISE
Sentence

The general purpose and operation of this directive
is described in Section 5, and Fig. 5(a) shows some
examples of the use of this directive. This directive
also makes it possible to modify a definition pre-
viously given, e.g. DEFINE CLASS Sentence :
8 = CHANGE : Condition Comp = UNLESS :
Condition : THEN : action, alternative TO USE
Unlesscond Comp.

This example causes the alternative of the class
sentence which was TO USE the procedure Condition
Comp to be replaced by the format given. It is also
possible to define a class in such a way that certain
formats are not allowed as in DEFINE CLASS
consonant : 12 = letter NOT vowel.

151

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/2/144/623346 by guest on 13 M
arch 2024

COMPL

DELETE CLASS sentence
The operation of this directive is self-explanatory

in that it simply removes the format trees associated
with the class specified.

6.2 Summary of statements

COMPILE Sentence = {Set N(l) = W(N(2))}.
The operation and use of this statement has been

explained in Section 5.

COPY W(N(1)) to W(N(6)) ; 6
This statement is used to copy a block. In the

example given the block of 6 words, the first of which
is W(N(1)), is copied to the block starting at W(N(6)).
In order to clear a block the source may be written
as ZERO.

EXECUTE Prog A ; Begin 1
This statement is equivalent to PERFORM then

EXIT, and transfers control from one procedure to
another without storing a link. See PERFORM for
further details.

EXIT
This returns control to the procedure which entered

the current one by a PERFORM statement. If
EXECUTE was used to enter a procedure then control
will be returned to the procedure above that.

FINDR TREE 10 INTO N(l) ; NEAR NB(6)
This statement requests storage space from the

system and cannot ask for more than 128 words at a
time. In the above example, 10 words of store are
found, near the data store address in NB(6) and the
address of this space is put into N(l). Since a TREE
is requested the space is supplied as a main chain.
Alternatively the space can be requested as a BLOCK
as described in Section 3. In that case the requested
space is supplied completely empty.

FREE N(l) ; TREE
This returns storage space that is no longer required

to the system. The space to be returned may be a
BLOCK of a specified length as described in Section 3
or may be, as above, a TREE. When freeing a TREE
all substrings pointed to by a word with T = 2 are
freed but T = 0 is treated as T = 3, i.e. the B field
is regarded as a data field.

GEN Sentence = {If Condition [N(2)] then set
N(l) = W(N(6))} INTO NA(1)

The operation and use of this statement has been
explained in Section 5.

GO TO fail
This causes a transfer of control to the sentence

identified by the label specified, in this case to the
sentence labelled FAIL. (See Fig. 5(c).) A GO TO
statement may not specify a BEGIN label.

PACK N(3) INTO W(N(4)) ; 1 ; 9
This statement will pack data into a non-standard

field of a nestword or data store word. The field to
be used is specified by two integers, the first being the
position of the most-significant bit in the word; the
second gives the length of the field. The above
example is equivalent, therefore, to

SET WL(N(4)) = N(3).

PERFORM Prog A ; Begin 1
This statement transfers control to the procedure

specified having stored a link to be used when EXIT
is obeyed. In the example given procedure Prog A
is entered at begin 1. Alternatively the procedure can
be specified by an operand, as in PERFORM
PROCEDURE (ETB[W(N(1))]). In this case the
operand specifies the data store address which the
system uses to identify a procedure internally. (See
Section 9.)

POP UP 1 ; 2 ; 4 ; 5
This statement, together with PUSH DOWN

controls the operation of the "stack"; see Section 3.
This POP UP statement removes the top level from
the stack resetting nestwords N(l), N(2), N(4) and
N(5). POP UP ALL resets all the nestwords, and
POP UP just removes the top level of the stack. No
procedure may "pop up" more times than it has
"pushed down" but may "push down" more often
than it "pops up". In this latter case the EXIT
instruction will cause the system to execute the
necessary POP UP statements to reset the stack but
will not modify the nestwords.

PUSH DOWN
This simply stores the current values of the seven

nestwords on the top of the stack without altering
them.

SET WB(N(1)) = N(2) + NL(3) * WB(NB(4))
This is used to assign a value to a word, or part of

a word in the data store or in the nest.

6.3 Functions

LISTW [1|WL(N(5))|3|WA(NB(5))|N(4)]
The purpose of this function is to set up a word in

the standard listword format. The value of this
function is therefore the 48-bit quantity specified by
the MLTB and A fields given. Field overflow is
ignored everywhere.

ENDW [W(LA6)]
The value of this function is the contents of the

penultimate word in the main chain whose address is
given. Thus the least-significant 18 bits of this value
give the address of the last word in the main chain.
The last word of a main chain is indicated by having
M = 0 or by A = 0 if M = 1. If the above example

152

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/2/144/623346 by guest on 13 M
arch 2024

COMPL
is applied to the tree in Fig. 6(a) it will be seen that
the value of the function, in this case, is

LISTW [1|11|2|LA8|LA7].

ETB [W(WA(LA6))]
The value of this function is the terminal A field

of the substring addressed by the word given. Again,
using Fig. 6(a), the value in the above example would
be LA6. A complete description of the use and
operation of this function was given in Section 5.

LABELW [15 ; W(LA6)]
The purpose of this function is to scan the main

chain whose address is given in order to find the first
word which has an L field of the value specified. If
no such word exists the value of the function is zero.
Applying the above example to Fig. 6(a) would give
the value as LA7.

LSHIFT [W(N(2)) ; 15]
This function provides a logical shift up and its

value is the result of shifting up the word given by
the number of places specified.

RSHIFT [W(N(2)) ; 15]
This provides an unrounded arithmetical shift down

and is specified as the function LSHIFT. As these
two functions represent different types of shift it
should be noted that in either case a negative shift
can be used to shift in the opposite direction.

NFIELD [W(N(4)) ; 1 ; 9]
This function permits the extraction of non-standard

fields from the nest and data store words. The
position and length of the field is specified as in the
PACK statement. The above example is equivalent
to WL(N(4)).

STRINGR [10|WB(N(5» : N(4)]
This function is used to introduce a tree structure

to the system and its value is the address of the tree
created. The expression between square brackets
represents a main chain where the elements on the
chain are separated by semicolons. The terminal A
field of this chain is given by the last entry in the
square brackets; the terminal M is zero if this is
preceded by colon and one if preceded by semicolon.
The LTB fields of each word of the chain can be
specified in the following ways

L|T.B or L|TB or LT.B or LTB.

Thus the above example, if the result is to be held in
N(l), is equivalent to
FINDR BLOCK 1 into N(l).

SET W(N(1)) = LISTW [0|l0|0|WB(N(5))|N(4)].
A more complex example of the use of this function

is given in Fig. 6(b).

VALUE [N(l)]
This function is provided to enable the analysis tree

SET N(l) = STRINGR[1234 ; 11|2.STRINGR[12|3.LA7 ; 131
STRINGR [1413.4567 ; 0] : LA6] ; 63.9876 : 999].

Fig. 6(b).—Creation of tree structure shown in Fig. 6(a) by use
of STRINGR function

for an integer to be converted to its binary value. An
integer is defined as Digit, Digit . . ., i.e. any number
of digits but at least one. The operand between the
square brackets gives the address of such an analysis
tree, and the value of the function is the value of this
integer as a binary number.

7. The implementation of the COMPL system
For reasons which are purely historical the operating

system is broken down into two distinct parts: the
COMPL system proper and the CIL system. All those
operating facilities which are associated with the data
store and the COMPL object program together with the
mechanism for controlling the peripheral and the inter-
face with the computer operator form the CIL system.
The COMPL system itself handles all the remaining
facilities including the initiation of the compilation
processes.

The user of this two-level system must know which
directives are handled by which system and must use
extra directives to change from the one system to the
other. The directive COMPL causes the CIL system to
enter the COMPL system, and the directive COP has
the opposite effect. This unfortunate split in responsi-
bilities has frequently given rise to operating errors and
is one of the less desirable features of the system which
result from pure administrative difficulties within the
compiler team.

The CIL system itself is again divided in two. The
operations which control the execution of procedures,
the data store and, in general, the environment for a
COMPL object program are all the responsibility of the
CIL interpreter. The remaining features of the system
which include practically all the directives which are
recognized in the CIL system are handled by a program
called COP. This split in the design of the system is
logically necessary since it is the CIL interpreter that
transforms the Orion computer into a machine with
large data store and chapter store, etc., and COP is
merely one of the programs held within this artificial
machine. The COMPL system proper is also held in
the form of a COMPL object program.

The mechanics of the COMPL and COP system
programs are reasonably straightforward and do not
justify any special discussion in this context. The
operations of the interpreter, however, may well be of
interest to the reader.

The interpreter provides three essential facilities: The
storage organization of the COMPL system, the
mechanism for handling the COMPL object program
and the interface with the operator. The first and
second of these are described in Sections 8 and 9,
respectively.

153

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/2/144/623346 by guest on 13 M
arch 2024

COMPL
During normal operations the entire COMPL system

is controlled by a series of directives punched into paper
tape. This paper tape input channel, like the monitoring
peripheral, is controlled by the lower-level subroutines
of the system, and these are written in such a way that
the entire input stream, or monitoring output stream,
can be switched from one peripheral to another by
operator action. The other peripherals of the system
are controlled by standard routines also, so that organiza-
tional changes which affect the use of peripherals can be
made by operating on the central routines of the system.

One instance of the value of this technique is provided
by the DUMP and RESTORE facilities which have been
built into the system. These facilities will operate at any
time and are able to do so because the CIL system can
recognize the position and status of all devices in use
by the program. The DUMP directive specifies a
particular magnetic tape and onto this tape will be
written a copy of all the program and data held within
the system. It is thus possible to use this tape at any
subsequent date to reinitiate the system at the point
which it had reached just prior to the dump.

The practice of making dumps is normally introduced
to combat the effects of machine failure, but in the
COMPL system DUMP plays two additional and
important roles. It provides the continuity between one
day's operations and the next, and it provides a mechan-
ism which is used by programmers to isolate the system
for investigation or further development work.

Two dumping methods are therefore included. A
"Master" dump is initiated by the directive DUMP
MAST and this causes the system to make a dump on
the next tape in a cycle of master dump tapes. These
are used for dumps made for security reasons and for
the provision of continuity between computer runs.
"Private" dumps are initiated by the programmer for his
own purposes by writing "DUMP initials/number",
where the initials and number specify a privately owned
magnetic tape. A variety of checks are included in the
system to guard against errors in operating and to ensure
that the cycle of MASTER dumps is not accidentally
destroyed.

8. Implementation of the storage system
The COMPL system is written to run on an Orion

computer with at least 8K of core store, 2 magnetic
drums, 4 magnetic tape decks, a paper tape reader and
a line printer (or paper tape punch). The way in which
the equipment is used has been heavily conditioned by
the desire to make the system compatible with the
eventual NEBULA requirements.

The main components of the conceptual system have
already been described; they are the chapter store
(capable of holding 250,000 words of program), the nest,
and the data store (of 256,000 words). It is the task of the
system's store-handling facility to interpret the actual con-
figuration so that it performs like the conceptual system.

The store-handling facility is essentially a set of sub-
routines which sit permanently in the core store and

which have been linked together by an interpreter. The
decision to use an interpretive language as the object
code of the COMPL compiler was largely taken in order
to effect some reduction in the size and complexity of the
NEBULA compiler program. The use of an interpretive
scheme made it very much simpler to write the COMPL
compiler and also allowed more advanced program
development facilities to be written into the system.

The interpreter handles the data store in blocks of
128 words each and the chapter store in blocks of 512
words each. The two stores are handled quite separately
and each has allotted to it a certain fraction of the core
store and drum store.

The data store blocks are allocated to specific block
positions on the pre-addressed magnetic tapes. There
must be at least two pre-addressed tapes but if more are
available the operator may allocate these to the system
thus increasing its running speed. The 2048 data store
blocks are distributed equally among the pre-addressed
tapes, and therefore if more tape decks are available the
amount of data held on any one tape will be propor-
tionately reduced. The drum space which is used to hold
data store blocks can be varied, but to make a change
to this is not a simple operator action.

Space is usually allocated on the drum for about 100
blocks and in addition there is room for 12 blocks in
the core store. A "learning" program is used to control
the transfer of data store blocks between the core, the
drum and the magnetic tape. The strategy used by this
program is similar to that used in the Atlas 1 drum
learning program (Kilburn et al., 1962).

When the system has to bring a new block into the
core store it will usually write the least frequently used
block from the core to the drum. At the same time it
may find that it has to clear a space on the drum which
means that the least recently used drum block must in
turn be written back onto magnetic tape. There are a
few special cases which are recognized; in particular the
system does not write back onto drum or tape a block
which has not been changed in value.

Similarly free blocks are not transferred from one part
of the machine to another. It has also been found
desirable to "look ahead" by clearing space in both core
and drum before that space is actually required. This
latter operation, however, has not yet been taken as far
as it could, and there are strong arguments in favour of
clearing significantly more space on the drum than is
necessary at any particular time so that the clearing
operation can work on batches of blocks.

The chapter store is handled by the interpreter's
procedure entry and exit subroutines. Whenever control
passes from one procedure to another the system ensures
that the chapter holding the destination procedure is first
brought into the core store. The core and drum are
divided into blocks which each contain one chapter, and
all the chapters are held on one magnetic tape. In
addition each chapter is allotted to one particular core
position and one particular drum position. The system
then initiates drum and tape transfers on this basis by

154

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/2/144/623346 by guest on 13 M
arch 2024

COMPL

putting the required chapter in the core store if it is not
already there, and by using the drum wherever possible.

The free store mechanism, which was mentioned in
Section 3, is complicated by the fact that the data store
is handled in blocks. The problem is made even more
complex when one attempts to minimize the peripheral
transfers involved when handling the free store. The
solution adopted is to design the system so that the free
store requests are met, if possible, in a block held already
in the core. If this is not possible then a partly filled
block which is held on the drum is used, and if no such
block exists then the space is allocated in a previously
free block (peripheral transfers for which are suppressed
automatically). To do this it is necessary to hold a free
store pointer in an extra word carried around with each
block, and in addition a value E is computed which gives
an approximate measure of the sizes of the free store
areas in the block. Two tables are then held in the core
store: one gives the value of E for each block currently
held on the drum, and the other contains a 1-bit marker
which indicates whether or not a particular block is free.

To facilitate program development certain extra
development aids have been included in the store
handling system. On the one hand it is possible for the
operator to turn on a trace which gives details of the
peripheral transfers as they are initiated, and in addition
there are built in checking facilities which ensure that
free store is not used illegally. This latter trap has been
most valuable, as has the trap which is based on the
fact that the data store locations with small integer
addresses are never made available to the programmer.
Additional optimization has been made possible by
allowing the programmer to specify a data store address
near to which a newly found word should be for maxi-
mum efficiency. To assist in the detection of "store
thieves" it is possible to print out at any time the number
of words which are currently classified as being free store.

The system of program development aids also includes
a standard post mortem which is initiated if the system
should fail or if the COMPL programmer should come
up against a trap. This post mortem gives printed details
of the nest, the free store, those parts of the chapter and
data stores which are currently in use, and some extra
details about the procedure currently being executed.
It has been found that this single post mortem is usually
enough to allow a fault to be diagnosed correctly. The
printout is a little lengthy, however, but a single post
mortem facility which meets nearly all occasions and
which can be initiated simply and quickly has proved to
be most valuable.

Section 3 also mentioned the seven nest words. These
seven words are held permanently in the core store
although the stack with which they are associated is held
in the data store. The stack is held in a series of data
store blocks and is used to hold subroutine links as well
as copies of the nest. There is a trap, however, which
prevents the user using the top entry on the stack in the
wrong way.

In addition to the storage facilities known to the

COMPL programmer there are eight additional registers
which are available and which are used by the COMPL
object program as working space to hold intermediate
results. These too are held permanently in the core
store.

9. The COMPL object program
The COMPL compiler compiles into a language called

CIL, and it is this language which is interpreted by the
C1L interpreter. The CIL procedures may contain
machine orders and in some of the more critical parts
of the compiler this is indeed the case. In general,
however, the CIL instruction is used because it can be
produced from a COMPL program and because a CIL
instruction is considerably more compact than the
equivalent Orion instructions. This latter situation arises
mainly through the need to include data store handling
program in addition to the arithmetic or logical operation
itself.

The CIL procedure is a unit which operates in its own
local store and is therefore completely relocatable. This
is achieved by holding with each procedure a "directory"
which is effectively a conversion table for converting an
internal program address into a data store address. The
directory also contains the program addresses of the four
entry points to the procedure so that it is not necessary
to know the internal format of a procedure when writing
a PERFORM statement.

The procedure's internal addresses are specified as, for
example, P(176) and this notation can be extended in the
same way as a reference to the nest or data store. One
can therefore write PA(176) to refer to the A subfield in
P(176). The range of permitted program addresses is
larger than the permitted maximum procedure size. The
program locations that can be addressed are P(128) to
P(4095) but no one procedure is normally permitted to
contain more than about 500 words of program. The
locations P(l) to P(7) correspond to the locations N(0)
to N(6), and the extra registers used by the object
program but unknown to the COMPL programmer are
P(8) to P(15) or alternatively X(0) to X(7).

The COMPL object program can write into the
procedure's own local storage space, although this
facility is denied to the COMPL programmer. The
reason for this restriction on the COMPL programmer
is, like several other restrictions, designed to enforce a
uniform and healthy approach to program writing.

The CIL instructions which are used in most COMPL
object programs can be distinguished from the machine-
code instructions by the absence of the most-significant
bit. If the user attempts to obey a CIL instruction after
a series of machine instructions the hardware auto-
matically enters the interpreter, and similarly the CIL
interpreter will transfer control to any machine order
that it is required to obey.

The CIL instruction is essentially three-address and
occupies 48 bits. The written format is, for example:

WA(NB(2))

155

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/2/144/623346 by guest on 13 M
arch 2024

COMPL
This instruction sets X(l) = N(l) * WA(NB(2)). In
general the format of an instruction is

function X-address Y-address Theta,

where the X-address specifies an X register or Nest word,
the Y-address specifies any program address (and thus
any X register or nest word as well), and Theta is an
operand which is evaluated in 48 bits. The operand
may be a simple integer or may be a data store reference
plus a program address reference as in the above example.

The function list is somewhat arbitrary and is the
result of a somewhat chequered history of development.
In total there are 64 available function codes which are
organized in several different groups. Examples of each
group are given in Fig. 7.

The program development aids mentioned in Section 1
have their equivalent forms in the CIL object program.
The trace on branches in a program is controlled by
two 1-bit fields Tl and T2. If Tl = 1 the instruction
was labelled in the COMPL version and if T2 = 1 the
instruction is the "fail" jump in a conditional expression.
In theory a third bit "T3" would be needed to mark the
"success" jump in a conditional expression, but since
only two bits are available the combination Tl + T2 is
taken to have this meaning and therefore the occasional
occurrence of Tl + T2 on a fail jump that was labelled
gives an inappropriate printout. The check point
monitoring facility also uses one bit in the CIL instruc-
tion. If this bit is set then associated with that instruction
will be an entry in a "Monitoring Directory". This
latter directory is part of the main directory associated
with the procedure and which was described earlier in
this section. The monitoring directory entry contains
the program address of the instruction together with a
series of codes specifying the monitoring styles to be
used. Essentially these are a four-character text plus
two requests for printouts of sections of the store using
the addresses in the CIL instruction as the operands
where necessary. For example the entry

P(324) MON2

causes "MON2" to be printed followed by the volume
of free store available (Style 5) and then the tree whose
address is Theta in the associated CIL instruction
(Style 9).

CIL Instruction
3 X(l) N(2) WA(N(3))

10 0 P(312) WB(N(1))
12 0 P(312) W(NA(1))
16 0 N(3) N(4)

17 N(l) P(314) N(3)
24 N(2) 258 W(12784)

26 N(2) 258

30 N(2) N(3)

33 N(2)
36 0

38 0
44 N(6)
50 3

59

0
2
0

N(3)
N(2)

P(324)

12784

5
172846

0
16

W(6172)

Interpretation
Set X(l) = N(2) * WA(N(3)).
Set P(312) = WB(N(1)).
Set WA(P(312)) = W(NA(1)).
Add N(3) to the integer part of
the Y address in the next instruc-
tion and add N(4) to the integer
part of theta in the next instruc-
tion.
Jump to P(314) if N(l) > N(3).
Note that 258 = 4*64 + 2. Put
in N(2) the 4-bit field starting
2-bits down from the top of
W(12784).
Put N(2) into the 4-bit field
starting 2-bits down from the top
of W(12784).
Find R Block 7 into N(2): near
N(3)
Free N(2); Block 7.
Perform procedure 172846 at
Begin 2.
Push Down.
Set N(6) = LABELW[16 ; N(3)].
Note that 3 refers to the subfield
L where subfields are numbered
in the order ABTLM.
Set NL(2) = NL(2) + W(6172).
Copy a block of 6 words from
P(324) to W(N(1)).

Fig. 7.—Some CIL instructions

The procedure directory can therefore be seen to be
the one important link between the body of the procedure
and the external world. The procedure is, in fact,
identified solely by the address of its directory, and the
cross references within the system are implemented in
terms of this one address. The directories, therefore,
are never relocated, and when a procedure is cancelled
and a new version is compiled it is only the content of
the directory which is changed. This one device is,
therefore, the corner stone to the administrative and
technical mechanisms which were designed to ensure
compatibility between the various segments of the
NEBULA compiler during all stages of its assembly and
development.

10. Acknowledgement
The work on the COMPL compiler was carried out by

the Nebula Programming Branch in I.C.T. and the
authors wish to express their gratitude to I.C.T. for
permission to publish this article.

References

BRAUNHOLTZ, T. G. H., FRASER, A. G., and HUNT, P. M. (1961). "NEBULA: A Programming Language for Data Processing,"
Computer Journal, Vol. 4, p. 197.

I.C.T. NEBULA Reference Manual.
BROOKER, R. A., and MORRIS, D. (1960). "An Assembly Program for a Phrase Structure Language," Computer Journal, Vol. 3,

p. 168.
BROOKER, R. A., and MORRIS, D. (1961). "Some Proposals for the Realization of a Certain Assembly Program," Computer

Journal, Vol. 3, p. 220.
KILBURN, T., EDWARDS, D. B. G., LANIGAN, M. J., and SUMNER, F. H. (1962). "One Level Storage System," I.R.E. Transactions

on Electronic Computers, April 1962.

156

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/2/144/623346 by guest on 13 M
arch 2024

