
LITHP—an ALGOL list processor

By R. W. L. Trundle*

List Processing has become the primary mechanism for the manipulation of the data structures
found in most branches of non-numerical analysis. This paper describes a simple implementation
of list processing which can be used on any machine having a suitable ALGOL compiler.

A list processing package was written in collaboration
with Mr. P. Hammersley of Northampton College of
Advanced Technology for use on the Elliott 503, and
the Ferranti Pegasus, though further development was
halted on the Pegasus due to lack of store and also on
the 503 due to limitations of the Elliott ALGOL. The
list processing methods used here depend very heavily on
those of Woodward and Jenkins of The Royal Radar
Establishment (Woodward and Jenkins, 1961; Jenkins,
1964)—in fact, the processes used in this paper are a
slight variation on their exposition of McCarthy's
LISP (McCarthy, 1960). The object of this paper is to
facilitate the implementation of a list processing pro-
cedure on any machine that has an adequate ALGOL
compiler, and for descriptive purposes the program is
called LITHP. As list processing is essentially recursive,
an ALGOL implementation that is not fully recursive
itself, such as that of the 503, may impose severe restric-
tions on the capability of the machine to handle LITHP.
However, no such difficulties should occur with machines
which have a full ALGOL implementation.

This package consists of sixteen procedures which
can be subdivided into four groups:

1. THE CODE PRIMITIVES type, assemble, tag, extract,
inword and put, which are used to construct the
other procedures of the package.

2 . THE LIST PROCESSING PROCEDURES fid, tl, COTIS,
atom, equ and null from which all list processing
operations can be constructed.

3. THE HOUSEKEEPING PROCEDURES clear and start,
used for garbage collection and initiation.

4. INPUT/OUTPUT by inatom and out.

The whole package is nested within two block headings
to enable global variables and arrays to be declared for
the package and the user program. Thus the overall
structure is:

begin <global variables)
begin <global arrays)

<LITHP package)
begin <user program)
end

end
end;

tail (JC) x \ A \

head (JC)

the p-word that is the list x the atom A

the nil atom

a modified form of diagram showing the list x = (A)

Fig. 1

Machine representation of lists
Two sorts of elements comprise the main list processing

store: these are atoms (the basic data to be manipulated)
and /?-words (the link elements that form the structure
of the lists). All other words in the store are on the
lists of available space, ^-words and atoms can be
shown schematically as in Fig. 1 where x is the name
of a list and A is an atom.

Every word in the stack is divided into three parts:

(i) tag—which consists of a single bit, and in the
current implementations this is taken as the sign
bit; its use will be discussed under garbage
collection.

(ii) type—which consists of two or three bits suf-
ficient to enumerate the types of atoms and
/7-words that are in the stack.

(iii) body—which comprises the remainder of the
word and is subdivided according to the integer
represented by type:

for a p-word, body is divided into two parts
(head and tail)
for an atom, body is divided into a number of
characters that constitute the atom.

These subdivisions are illustrated in Fig. 2 with
reference to the 39-bit word of the Elliott 503. For a
/>-word, type = 1; for an atom, type = 2; while for a
word on the list of available space, type = 0.

A useful extension would be to increase the length of
an atom by having two types of atom words, an inter-
mediate and a terminal, so that an atom could become
a simple non-branching list.

* S.H.A.P.E. Technical Centre, P.O. Box 174, The Hague, Netherlands.

167

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/2/167/623394 by guest on 19 April 2024

LITHP

503 word

/>-word

atom

available
space

t
a
g

type head tail

t
a
g

type character character character character character

integer

Type= !

Type = 2

Type = 0

Fig. 2

The global variables and arrays
There are in fact only two global arrays which com-

prise a vector of names of lists, "x", and a main store
called "stack" which contains all the information about
the lists.

There are four global variables:

(i) tor—the size of the vector x
(ii) top—the size of the vector stack
(iii) tel—the stack pointer
(iv) nil—the nil atom

In any implementation tor, top, tel and nil are, of course,
all integer variables.

The code primitives
1. integer procedure type (j>); value p; integer p;

comment
This procedure collates and shifts those bits of the

word in the stack that are type, and expresses the
result as an integer;
begin code end;

2. integer procedure assemble (a, b, c); value a, b, c;
integer a, b, c;

comment
Assemble packs the three integers a, b and c into

a single p-word, as the head, tail and type respec-
tively;
begin code end;

3. integer procedure tag (p); integer/?;
comment

This procedure negates the single bit that is the
tag of an element of the stack;

begin code end;
4. integer procedure extract {a, b); value a, b;

integer a, b;

comment
Extract gives the integer that is the head or tail

of the p-word b according to whether a = 1 or not.
Ifb is not a p-word an error condition occurs;

begin code end;
5. integer procedure in word;

comment
This procedure scans the input medium for an

atom initial delimiter, and for the 503 this was taken
to be a tild, ~ . The ensuing characters are then
packed into a single word until the word capacity
has been reached or a terminal delimiter has been
encountered, which for the 503 is a space;

begin code end;
6. procedure put (s); value.?; integers;

comment
This procedure unpacks the characters that com-
prise the atom s and transmits them to the output
medium;

begin code end;

List structure •
Let x, y and z be list names and A, B, C and D be

atoms. Use the following notation:

(i) x — (A, B) to mean the list x consists of the atoms
A and B.

(ii) y = C to mean that y is the atom C.
(iii) z = (Z>) to mean that the list z consists of the

atom D.

Using the modified form of the schematics of Fig. 1,
these structures are shown in Fig. 3.

Fig. 3

168

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/2/167/623394 by guest on 19 April 2024

L1THP

As the elements of a list can themselves be lists,
complex structures can be built from atoms and p-words.
An example of this is the list x = ((((A, (£)), (C)),
(D)), E) illustrated in Fig. 4.

The list processing procedures
These six procedures are based on the Woodward-

Jenkins definition. They fall into two groups of three:
Boolean procedures used to test the status of words in
the stack, and integer procedures that are used to
manipulate list structures. This latter group can best
be defined by means of examples which are illustrated
using the schematics of Fig. 1.

(1) itt = (A,B,C,D)
then hd(t) = A, and tl(t) = (B, C, D)

(2) if u = A is an atom
then hd(u) and tl(u) are undefined

then hd(v) = A and tl(v) = nil

Fig. 5.2

The ALGOL procedures for hd and ;/ are:

integer procedure hd(p); value/?; integer/?;
hd:= extract (/,/>);

integer procedure tl(p); value p; integer p;
/ / := extract (2,p):

The ALGOL instructions JC:= hd{x); and y:= tl(y);
cause the tail and head respectively of x and y to be lost.

(4) if w = A, and w = nil
then cons (w, w) = (A)

cons (u, w)

Fig. 5.3

(5) u = A,y = (C,D)
cons (u, y) = (A, C, D)

cons («, y)

Fig. 5.4

(6) x = (A, B), y = (C, D)
cons (x, y) = «A, E), C, D)

cons (hd(x),
cons (hd(tl(x)), z))

Fig. 5.6

(7) x = (A, B), z = (C, D, E)

cons (hd(x), cons (hd(tl(x)), z)) = (A, B, C, D, E)

The ALGOL procedure for cons is:
integer procedure cons (p, q); value p, q; integer
p,q\

begin integer u; if atom (q) A "• null (q) then
begin comment this is an error condition. The
solution adopted was to output an error message
and equate the list to the nil atom;

cons:= 0; go to Jin
end else cons:= u:= tel; tel:= stack [«];
stack [u]: = assemble (/?, q, 1); comment this
takes the next word off the stack, forms it into
a p-word and increments the stack pointer;
if tel = nil then clear; comment if stack
exhausted call garbage collector; fin: end;

The three Boolean procedures together with their
ALGOL implementations are:

(i) atom (A) which has a value true / / A is an atom,
otherwise false.
boolean procedure atom (p); value p; integer p;

atom:= type (p) = 2;

169

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/2/167/623394 by guest on 19 April 2024

LITHP

(ii) equ (A, B) defined for any parameter A and an
atom B has the value true if A is the atom B,
otherwise false,
boolean procedure equ (p,q); value p, q; integer
p, q\

equ:= if atom (q) then stack [p] = stack [q]
else false;

(iii) null (a) which is true if A is the nil atom, otherwise
false,
boolean procedure null (/?); value p; integer/?;

null: = stack [p] = nil;

Garbage collection
This parameterless procedure retrieves from the stack

all words that are not elements of lists and concatenates
them into a list of available space. The process is to
tag all words on the stack that can be traced from list
names; all untagged words can now be formed into a
simple non-branching list. The following program gives
an explanation of the procedure for doing this:

procedure clear;

begin integer./, k; boolean first; integer array z [1 : 50];
comment

An arbitrary assumption has been made that not
more than 50 branches will need to be held at the
same time in the auxiliary stack z. This can, of
course, be varied at will;

forj:= 1 step 1 until tor do
begin integer p; p: = x\J]; k:= 1;
A: if stack [p] < 0 then
begin tag {stack [p]);

if type (p) = 1 then
begin z[£]: = tl (p); k:= k + 1;

p:= hd(p); go to A
end

end;
if A: > 1 then
begin k:= k — \;p:= z [k]; go to A end
end;
fory:= 1 step 1 until top do tag (stack [j]);
first := true;
fory: = 1 step 1 until top do
begin if stack [j] < 0 then

begin if first then
begin tel:= k:= j ; first := false end
else k:= stack [k]:= j ;
tag (stack [j])

end
end;
stack [k]:= nil
end;

Initiation
This is a single parameterless procedure that must be

the first instruction of the user program. Its function is:

(i) to set nil as an atom with a zero body;

(ii) to set each list on the vector of lists, x, to be a
list of a nil atom;

(iii) to concatenate the vector, stack, making it a
single list of a nil atom.

The procedure is:
procedure START;

begin integer run;

code; comment to set nil to the null atom;
for run: = 1 step 1 until tor do
x [run]:= 0; stack [0]:= nil;
comment every list is now a null atom;
for run:— 1 step 1 until top do stack [nm]:= 0;
clear; comment the call of clear concatenates the
stack and sets the stack pointer, tel, to the head
of the list that the stack now forms.

end;

Input/output
This is of necessity highly machine-dependent but by

the use of two code primitives, inword and put, and the
assumption of the procedures print <"string"> and print
<control character), input/output can be described in
terms of ALGOL procedures:

Input
integer procedure inatom;

begin integer mark;
inatom : = mark:= tel;
tel:— stack [tel];
stack [mark]:= inword + nil;

comment this puts the word on the stack and incre-
ments the stack pointer;

if tel = nil then clear;
comment if the stack is exhausted the garbage

collector is called.
end;

It is only necessary to input the string that comprises
a single atom, as all lists are constructed from atoms by
use of the list processing procedures. Lists can be built
up by use of such operations as x:= cons (inatom, x);.
An atom can only be attached to the head of a list, so
that a list is formed in the reverse order to that in which
the atoms are input.

Output
Output is achieved by tracing a list from its head;

each time a p-word is encountered the address of the
tail is put on an auxiliary push-down stack, and the
trace is continued from the head of that p-word. When
no further progress can be made the process goes to the
address at the top of the auxiliary stack, and when this
is also exhausted the complete list has been output. To
obtain a normal list output of the form ((̂ 4, B), C, (D), E)
the following conventions are used:

for a /?-word encountered during a head
trace, output (

170

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/2/167/623394 by guest on 19 April 2024

LITHP

x = ((((/I, (B)), (C)), (£>)), E)

Fig. 6

for a /?-word on the auxiliary stack, output ,
for an atom, output the atom
for a nil atom on the auxiliary stack, output)

To illustrate this consider the list x = ((((A, (£)), (C)),
(D), E), given in Fig. 4, that is shown again diagram-
matically in Fig. 6, where this list is taken to be occupying
locations 1 to 23 of the stack. The integers in the
p-words are the head and tail addresses.

Fig. 7 shows the order in which the elements of the
list are handled, and the contents of the auxiliary push-
down stack at each stage.

LOCATION

1
2
4
6
8
9

10
12
13
11
7

14
16
17
15

5
18
20
21
19
3

22
23

CONTENTS

2 : 3
4 : 5
6 : 7
8 :9
A
10 : 11
12 : 13
B
nil
nil
14 : 15
16 : 17
C
nil
nil
18 : 19
20:21
D
nil
nil
22 :23
E
nil
EXIT

OUTPUT

(
(

A

(
B
)
)

(
C
)
)

(
D
)

>
E
)

CONTENTS OF
PUSH-DOWN

AUXILIARY STACK

3
5,3
7 , 5 , 3
9, 7, 5, 3
9, 7, 5, 3
1 1 , 7 , 5 , 3
13, 1 1 , 7 , 5 , 3
13, 1 1 , 7 , 5 , 3
1 1 , 7 , 5 , 3
7 , 5 , 3
15, 5, 3
17, 15 ,5 ,3
17, 15 ,5 ,3
15, 5, 3
5 ,3
19,3
21, 19,3
21, 19,3
19,3
3
23
23

Fig. 7

The flow chart, Fig. 8, together with the following
ALGOL program, gives the general method. The
limitations and restrictions of the host compiler will, of
course, determine the modifications that may have to
be made before implementation.

The procedure is:
procedure out (j); value j ; integer j ;

begin integer/?, c, k, qq, r; integer array z [1 : 50];
k:=l, c:=0; p:=j; go to A;
B:z[k): = tl(p); c:=c+l; k:=k+l; p:=hd(p);
A: if atom (p) then
begin qq:= stack [p]; put (qq); c: — c+5;

C: if k < 1 then go to fin;
k:=k — l;p:=z[k]; if atom (p) then
begin if null (/?) then

begin print (")"); c: = c + l ; go to C end;
print (error message); comment salvage
routine required.

end;
print (","); if c> 90 then

begin print (new line); c :=0 end; go to B
end;
print ("("); go to B;

fin: end;
This procedure was designed for the 503 (but, of

course, will not run without modification) with a fixed
atom character length of 5 and a Flexowriter line length
of 90. The character count is the location c. The
assumption of a fixed atom length can be overcome by
the introduction of a side effect in the primitive put,
that records the number of characters in an atom as they
are transmitted to the output medium.

Discussion
The hierarchy of the procedures is:
type, assemble, tag, inword, put
extract, atom, null
hd, tl, equ
clear, cut
cons, inatom, start

and will be needed if a requirement of the host compiler
is that procedures cannot be called until they are
declared, as on the 503.

This system is still under development, and its next
implementation may be on a CDC 3600. Any comments
or suggestions will be welcome. Possible lines of
development are to introduce data tables as well as
unlimited length atoms, and to have aliases for the list
names since the notation x [i] is somewhat clumsy.

171

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/2/167/623394 by guest on 19 April 2024

LITHP

z[k]

inc

:rt l(p); p:= hd(

r

char count
k:= k+ 1

p)

by 1

inc char count
by atom count

k : r k - l ; p := z [k)

char count: length of line

reset char count
to zero

inc char count by I

Fig. 8
References

WOODWARD, P. M., and JENKINS, D. P. (1961). "Atoms and Lists," The Computer Journal, Vol. 4, p. 47.
JENKINS, D. P. "List Programming," Introduction to System Programming, AP 1964, Editor: P. Wegner, p. 238.
MCCARTHY, J. (1960). "Recursive Functions of Symbolic Expressions and their Computation by Machine," Part I, Communica-

tions of the Association of Computing Machinery, Vol. 3, p. 184.

172

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/2/167/623394 by guest on 19 April 2024

