
An algorithm for evaluation of remote terms in a linear
recurrence sequence

By J. C. P. Miller* and D. J. Spencer Brownf

A method is described for computing terms Un given by a linear recurrence relation from initial
conditions near n = 0, whereby values for large n may be obtained without computing all inter-
mediate values. The total number of operations is of order log n.

1. Linear recurrence relations arise frequently both
in number theory and in general numerical computations.
As examples requiring the evaluation of terms Un for
high values of n, we can quote

(i) Bernoulli's method for evaluating the largest root
of a polynomial equation,

(ii) the interest in factorizing members of the
Fibonacci sequence and related sequences.

2. One of the difficulties in using recurrence relations
to obtain the necessary Un is the apparent need to
compute all intermediate values up to the Un required.

This has been overcome for 3-term relations

aUn+l

For example, the Fibonacci sequence {[/„} satisfies

and the two most familiar, and independent, such
sequences are {£/„}, i^n) m which
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Then we have U2n = UnVn, V2n = V2
n - 2 ( - l ) "

and also

Thus from

we find

un+ l = un +
Vn = Un_,

U2n=UnVn,

Vn =£ / „_ , Un
+,.

Un, C/n_,

u,,_ „ un+ 2=un
Un+ „ Vn+ i=
U2n+2=Un+lVn

- U2n

and we can start again, from U2n and U2n+t, or from
U2n+i and U2n+2, or from C/2rt_i and t/2n, whichever is
convenient.

3. We now give an algorithm that may be used for
similar steps for a recurrence relation of any order.
This is most conveniently expressed in matrix terms.

3.1. Write the relation in the form

i • • • + anyQ = 0 (1)

We now choose n independent sequences

{Ur} = {Uri0,Ur<l,Un2...} r=\{\)n.

That is, we choose the sequences such that

implies that the constants Xr are all zero. We may then
write

for appropriate constants ar.
We choose, in fact, all the {Ur} from the same special

sequence, starting at successive terms,

{Ur} = {Ur,Ur+l,Ur+2,...}

wheie Un=\, Ur = 0, 1 < r < « — 1.

The matrix of values

= / t / , u2 ... un
u2 u, ... un+l

n u2n_l
is thus of form

B

and is non-singular, with determinant (—1) "f"
We write also

r ^ /Ur Ur+t... £/,+ „_

3.2 We now develop Ar where

The matrix Ar is independent of s, and depends only on
the coefficients in (1). It is evident that

in which the ar are constants, an # 0.
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Remote terms in recurrence sequence 

whence Ar = Ar, so that Ar could be found by matrix 
squaring and multiplication. However, the special form 
of Ur and particularly of [/, allows the simplified and 
efficient method of back substitution. 

Suppose Ur is known, involving knowledge of In — 1 
consecutive terms of {Ur}; of these, n — 1 may be obtained 
simply from the recurrence relation after the first n (or 
any consecutive set of n) are known. 

Then 

Whence 

Ur = Ar„lUl 

Ar_x = UfU^ 

This is easily obtained, since Ut is triangular.. In fact, 
as Professor E. S. Selmer has pointed out, it is evident 
from (1) that 

CUi = / 

-1 ««-2 • al 1 
-2 ««-3 • • a\ 1 0 

1 1 . 0 0 0 
I 0 . 0 0 0 

and consists of coefficients in the recurrence relation (1), 
and zeros. 

Then Ar_lUr 

is even more readily computed, since we need only the 
first row of Uir—\ which contains U2r_i to U2r+n— 2>" 
consecutive values. A complete set of U2r+S is then 
filled in by use of the recurrence relation, with the 
possibility of checking some of them by use of Ar-XUr. 

3.3. Finally we have Yr = BUr+1 where B is given by 
B= YoUr1 = Y0C. 

4. We illustrate by obtaining y4i where 

yr+ 3 = yr+1 + y„ with y0 = 3, yx = 0, y2 = 2 

so that yr = sr = <x\ + <xr

2 + ajj, where a,, a2, a 3 are the 

roots of x 3 — x — 1 = 0. 

We have 

[/, = / 0 0 1\ C = ur1 = 

Now 43 is 1 0 1 0 1 1 in binary, and we 
develop suffix 43 by doubling for a zero digit, and 
doubling followed by an increase of a unit for a non­
zero digit thus 

0 
0 
2 

0 
10 

1 
21 

1 
43 

We start by finding Al0. We get readily, by direct 
recurrence, that 

Uu = 4, 
and find 

UX2 = 5, t / 1 3 = 7, Ult = 9, t / l s = 12 

(4 5 7 \ / - l 0 1 
5 7 9 )( 0 1 0 
7 9 1 2 / \ 1 0 0 

Now Un = Al0Un 

so that C/21 = 65, U22 = 86, t / 2 3 = 114 

and U24 = 151, U2S = 200, U26 = 265 

The next and final cycle now gives 

An = u22url 

= / 86 114 151 
I 114 151 200 
\151 200 265 

and 

gives f/43 = 31572, 

65 114 86\ 
86 151 114 

114 200 151> 

t̂ 43 = ^21^22 

(744 = 41824, 

U46 = 73396 

U. 45 55405 

SO F43 = BU44 

and j 4 3 = -U44 + 3U45 = 178364. 

As a test, since 43 is prime, we verify that 43 divideŝ  
y43. In fact 

J43 = 43.4148 

= 43.22 . 17.61. 

5. We have remarked in § 3.2 that we need compute 
only n consecutive Ur occurring in t / 2 , . _ x. This means, 
in fact, that we have to know either 

(i) only a single row or column of An any one will 
do and we can choose the simplest or most con­
venient; we then need the whole of [/,., i.e. In — 1 
consecutive values of Ur, or 

(ii) only a set of n consecutive Un say Ur+a to 
Ur+„_1 + a, together with the whole of A,.. 

Special circumstances of the particular recurrence 
relation involved may decide which choice is most 
convenient (it is hoped to develop this in a subsequent 
paper). In general, however, it would seem best to 
adopt the first alternative and compute a single row of 
Ar, and obtain 2n — 1 consecutive values of Ur, n being 
supposed known as the result of the step just completed, 
and the other n — 1 obtained by direct use, forwards or 
backwards, of the original recurrence relation. It does 
not matter which row or column of Ar is obtained. We 
have, however, kept the full matrices in the numerical 
example in order to help understanding. 

6. Another way of obtaining these results that is not 
dependent on matrix ideas and which also casts light 
on the processes involved is as follows. 
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Remote terms in recurrence sequence

The original relation (1) may be written

= 2 an,, )'„- r
r = l

(6.1)

Then

yn+\ =
r = l

and we may use (6.1) to replace yn on the right giving

^«+i=So»+ir7»-,. (6.2)
r = l

We may now make a double step and use (6.1) and (6.2)
to replace yn and yn+ ̂ n

n

r=l

to yield
n

)'n+3 = 2 an+hryn_r.
r = l

We shall suppose, however, that we have developed

(6.3)

and also have, for a particular value of m

(6.4)

yn+ s = 2 «„+ , , r y n - ,• J = 0(l)ra
r=\

+s m+irynr
r = l

We then apply (6.4) to the relation, itself derived from
(6.4) with s = 0, and the suffix of each y increased by m,

n

yim = 2 om,ryn+m_r

to replace

ym+ s (on the right), with s = n — r = n — 1(—1)0

by sums involving yn-r, r = l(l)n. This yields

(6.5)

whence
n

yim+s=^a2m,ryn-r+, S = \(X)n - \ OTn

which can be reduced by (6.3) to yield
n

yjm+s ~ 2 a2m+s,ryn-r
r = l

for s = 0(l)n — 1 or s = l(l)«, whichever is appropriate.
This is a repetition of (6.4) with m replaced by 2m or
2m + 1.

In fact (6.4) is equivalent to

ym = Amy0.

We have seen, however, that Am is most easily developed
from the special sequence {Uo} by

Um+1 = AmUx or Am = Um+ ,C.

We also see that, given

n

r= 1

we may obtain

s+ 1 = s+ l . r Jn - r

r = l

yielding

with an n +, = 0. This is a recurrence relation for
an+s,r

We note that each row an+,_,., /• = 1(1)« occurs in «
successive matrices As+r, r = 0(1)« — 1.

It is hoped to give in subsequent papers two distinct
applications of this algorithm.
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