An algorithm for evaluation of remote terms in a linear

recurrence sequence

By J. C. P. Miller* and D. J. Spencer Brownt

A method is described for computing terms U, given by a linear recurrence relation from initial
conditions near n = 0, whereby values for large n may be obtained without computing all inter-
mediate values. The total number of operations is of order log n.

1. Linear recurrence relations arise frequently both
in number theory and in general numerical computations.
As examples requiring the evaluation of terms U, for
high values of n, we can quote

(i) Bernoulli’s method for evaluating the largest root
of a polynomial equation,

(ii) the interest in factorizing members of the
Fibonacci sequence and related sequences.

2. One of the difficulties in using recurrence relations
to obtain the necessary U, is the apparent need to
compute all intermediate values up to the U, required.

This has been overcome for 3-term relations

aU,,+1 + bUn -+ CUn—l =0.
For example, the Fibonacci sequence {U,} satisfies
Un+1 = Un + Un—l

and the two most familiar, and independent, such
sequences are {U,}, {V,} in which

n o 1 2 3 4 5 6 7 8
v, 0 1 1 2 3 5 8§ 13 21
Ve, 2 1 3 4 7 11 18 29 47.

Then we have U,, = U,V,, V,, = V2 —2(—1)

and also Vo=U,;-y + Upyy.
Thus from U, U,_
we find

U1 =U,+U,_y, Uypr=U,y, + U,
Veo=U,_1 + Un+la Ver1=U, + Un+2
U2n = Uan U2n+2 = Un+an+l
Uspir = U2n+2 — Uy
and we can start again, from U,, and U,,,,, or from
Uspyq and Uy, 5, or from U,,_, and U,,, whichever is
convenient.
3. We now give an algorithm that may be used for
similar steps for a recurrence relation of any order.

This is most conveniently expressed in matrix terms.
3.1. Write the relation in the form

yn+alyn—l"'+any0=0 (1)
in which the a, are constants, a,, #% 0.

We now choose n independent sequences
{Ur} = {Ur,Oa Ur,la Ur,2 .. } r= l(l)n'

That is, we choose the sequences such that
TAU=0 s=01n—1
r=1

implies that the constants A, are all zero. We may then
write

n
Vs = El arUr,s
r—

for appropriate constants «,.
We choose, in fact, all the {U,} from the same special
sequence, starting at successive terms,

{Ur} - {Ur: Ur+l’ Ur+21 . }
whete U,=1, U,=0, 1<rg<n—1.
The matrix of values

UIE U] U2 P U,,
(.]2 U3 e Un+l

Uy oo ovn U
is_thus of form
0 1

1 B
and is non-singular, with determinant (—1) nt»=1/2,
We write also

UrE Ur Ur+l"' Ur+n—l

Ur+n—1 e Ur+2n—2
3.2 We now develop A4, where
Ur+ s = AI‘US'

The matrix A, is independent of s, and depends only on
the coefficients in (1). It is evident that

ArAs = Ar+s
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Remote terms in recurrence sequence

whence 4, = A", so that A, could be found by matrix
squaring and multiplication. However, the special form
of U, and particularly of U, allows the simplified and
efficient method of back substitution.

Suppose U, is known, involving knowledge of 2n — 1
consecutive terms of {U,}; of these, n — 1 may be obtained
simply from the recurrence relation after the first n (or
any consecutive set of n) are known.

Then U,.:A,.__IUI
Whence A._,=UU!

This is easily obtained, since U, is triangular: In fact,
as Professor E. S. Selmer has pointed out, it is evident
from (1) that

CU|:I
C: a,,_l an_z a2 al 1 -
a,_, a,_; al O
a 1 000
1 0 00O

and consists of coefficients in the recurrence relation (1),
and zeros.

Then U2r—1 = Ar_ ‘U,.

is even more readily computed, since we need only the
first row of U,,_; which contains U,,_; to U, ,_2, 1
_consecutive values. A complete set of U, is then
filled in by use of the recurrence relation, with the
possibility of checking some of them by use of 4,_,U,.
3.3. Finally we have Y, = BU, ., where B is given by
B=Y,U,!'=Y,C.
4. We illustrate by obtaining y,; where

Yer3=DVrt1 T yp With po=3, y =0, y,=2
sothaty, = s, = o} -+ o} + af, where a,, a,, a; are the
roots of x3 —x — 1 =0.

We have

U=/0 01\ C=U'=/—1 0 1
010 010
1 01 1 00

Now 43is1 0 1 0 1 1 in binary, and we
develop suffix 43 by doubling for a zero digit, and
doubling followed by an increase of a unit for a non-
zero digit thus

1 0 1 0 1 1
0 1 2 5 10 21 43

We start by finding 4,,, We get readily, by direct
recurrence, that

Uy, =4, Uo=5 Us=7, U14=9, U15:12
and find
A= U, U

189

=/4 5 \N\/—1 0 I\N=/3 5 4
5709 010 4 7 5
7 912 1 00 597

Now Uy = 4,0Un
SO that U21 = 65, U22 = 86, U23 =114
and Uy =151, Ups =200, Uy = 265.

The next and final cycle now gives

Ay = UpUr!
= / 86 114 151 —1 0 1\ =/ 65114 86
114 151 200 010 86 151 114
151 200 265 1 00 114 200 151
and Uy =AU,
giVCS U43 - 31572, U44 == 41824, U45 = 55405
also U, = 73396
Next
B=Y,Ui'= /302 —101\ =/-103
023 010 320
232 100 032
SO Y3 = BUyy
and y43 - —U44 + 3U45 == 178364.
As a test, since 43 is prime, we verify that 43 divides'
Va3. In fact
Ya3 = 43.4148
= 43.22 . 17.61.

5. We have remarked in § 3.2 that we need compute
only n consecutive U, occurring in U,,_;. This means,
in fact, that we have to know either

(i) only a single row or column of A4,, any one will
do and we can choose the simplest or most con-
venient; we then need the whole of U,, i.e. 2n — 1
consecutive values of U,, or

(ii) only a set of » consecutive U,, say U,,, to
U,+ n_1+a together with the whole of 4,.

Special circumstances of the particular recurrence
relation involved may decide which choice is most
convenient (it is hoped to develop this in a subsequent
paper). In general, however, it would seem best to
adopt the first alternative and compute a single row of
A,, and obtain 2n — 1 consecutive values of U,, n being
supposed known as the result of the step just completed,
and the other n — 1 obtained by direct use, forwards or
backwards, of the original recurrence relation. It does
not matter which row or column of A4, is obtained. We
have, however, kept the full matrices in the numerical
example in order to help understanding.

6. Another way of obtaining these results that is not
dependent on matrix ideas and which also casts light
on the processes involved is as follows.
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Remote terms in recurrence sequence

The original relation (1) may be written’

- a,¥o
. (6.1)

Then

yn—l—l = glan,ryn— r+1
and we may use (6.1) to replace y, on the right giving

Yny1 = Zlan+ t,rYn—re (62)
r=

We may now make a double step and use (6.1) and (6.2)
to replace y,, and y,. |in

n
Ynt3 = Zlan+1,ryn— r+2
rm
to yield
n
yn+ 3= Zl an—!— 3,ryn— re
re

We shall suppose, however, that we have developed

Ynts = ;l At s ¥Vn—r S = 0(1)n (63)

and also have, for a particular value of m
Ymys = glam-{— se¥Yn—r S§= 0(1)n — L (64)

We then apply (6.4) to the relation, itself derived from
(6.4) with s = 0, and the suffix of each y increased by m,

Yom = ) AnsrYnt m—r
r=1
to replace
Ymay s (on the right), with s=n—r=n— 1(—1)0

by sums involving y,_,, r = 1(1)n. This yields

Y2m = Zl Dpm,r Yn—r (65)
whence

Yomys = EIQZm,ryn—r-}—s §= 1(1)’1 —lorn

which can be reduced by (6.3) to yield

n

Yam+s = zla2m+ sr¥n—r
r=

for s = 0(I)n — 1 or s = 1(1)n, whichever is appropriate.
This is a repetition of (6.4) with m replaced by 2m or
2m + 1.

In fact (6.4) is equivalent to

Ym = Amy0~

We have seen, however, that A,, is most easily developed
from the special sequence {U,} by

Um+l = AmUl or A,= m+1C-
We also see that, given
n
Ynts = Zlan+ srVn—r
o

we may obtain
n

Yots+1 = E] At s+ 1, Vn—r
r=

n—

1 n
= Z 0"+ s,r+ lyn—r+an+ s,lz an,ryn— r
r=1 r=1
yielding

an-i— s+1,r — an+ s,lan,r + an+ sr+1

with a,,,,=0. This is a recurrence relation for
Ant s,

We note that each row a,,,,, r = 1(1)n occurs in n
successive matrices A, ,, r = 0(1)n — 1.

It is hoped to give in subsequent papers two distinct

applications of this algorithm.
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