
A method for finding the optimum successive
over-relaxation parameter

By J. K. Reid*

A proof is given here of the well-known relation between the eigenvalues of the Jacobi and S.O.R.
iteration matrices in the case having Property A and consistent ordering. This proof also yields
a relationship between the corresponding eigenvectors, and we use this relation to form a method
of obtaining an approximation to the optimum relaxation parameter.

Analytical results

We consider here the solution by successive over-
relaxation of the set of linear equations

and suppose that

Ax = b

= D- L—U,

0)

(2)

where D is diagonal, L is strictly lower-triangular and U
is strictly upper-triangular. We will assume that the
matrix A possesses Property A and is consistently
ordered, that is that for any positive scalar p there exists
a diagonal matrix Gp such that

pU2L (3)

This is equivalent to the definitions given by Young
(1954). He required the existence of an ordering vector
(q{, q2,. . . qn) with integer coefficients sucti that if the
elements of A are a,7 and if a0- ^ 0 and i ^ j then either
qt = q. -f 1 and i > / o r q, = qs — 1 and i <j. If we
set Gp = diag(^9,/2) then equation (3) is satisfied and
conversely, given a matrix Gp, it is a simple matter to
construct an ordering vector with the necessary
properties. Details of this construction are given in the
appendix. Hereafter we assume Gp is of the form

The S.O.R. iteration matrix is

Ma = (D — coL)~ '((1 — co)D + toU). (4)

If this has an eigenvalue A, then the corresponding
eigenvector yt satisfies the equation

((1 - to)D + a>U)ys = A,(£> - (5)

and

co(U+ \L)y, = (A,. + co - \)Dyh (6)

which may be written as

LO\)I2{\TV2U + X)l2L)yi = (A,- + co — l)Dy, (7)

provided A,- =/= 0. Using (3) and rearranging, we find

D~ \L
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(8)

provided co # 0 (and the case co = 0 is of no interest
to us). Now D~ \L + U) is the Jacobi iteration matrix
and (8) shows that it has G^V; a s a n eigenvector.
If the corresponding eigenvalue is fit we find the well-
known relation

(A, (9)

It also holds for A,- = 0 since in this case we find from (5)
that

that is

det{(l — co)D + coU} = 0

(1 - co)" II d-, = 0

(10)

(11)

if the elements of D are d,. Now the iteration is not
possible unless each d-t is non-zero. It follows that
a) = 1 and (9) is still valid.

Practical application for symmetric, positive-definite
matrices

In the case where A is symmetric, it is a well-known
deduction from equation (9) that the spectral radius of
M.,s is minimized if co is chosen as

"opt 1 + (1 -
(12)

= max This is shown by Varga (1962),where /
for example.

This is very satisfactory as it stands if a good a priori
estimate for fx is available, but otherwise we need an
algorithm that finds it without increasing unduly the
total amount of work. Carre (1961) and Kulsrud (1961)
each describe useful techniques based on examination of
the displacement vectors S(l) which satisfy the relation

= j|f gw. (13)

Both rely on the use of a relaxation factor slightly less
than coop, to ensure that the dominant A, corresponds to
the dominant /x;. Carre iterates a few times with para-
meter cok suggesting twelve times as suitable. He then
makes an estimate, vk, of the dominant latent root of
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Mak from the ratio of the norms of the last two displace-
ment vectors or by Aitken extrapolation on the last
three ratios of successive displacement vector norms.
Hence using equations (9) and (12), he estimates n and
then co0 ,. If this estimate is io'k he continues the iteration
using

Wt^ , = cot — -HI — (14)

For a wide range of problems he finds that this gives a
good estimate for the value of o> for which the ratio of
dominant to sub-dominant latent root of M^ is largest.
He continues in this way until successive estimates cok+ {

show good agreement and thereafter uses cok as fixed
relaxation parameter. Kulsrud's process is essentially
the same except that he takes ook+ , = u>'k. As he shows
in his paper, these estimates wk will steadily increase and
it is difficult to guarantee that a gross over-estimate will
not be obtained, particularly in view of the fact that all
the eigenvalues of Mu are complex for w > coopl.
However, he reports that for three test cases he found no
more iterations were required with his technique than
were needed with the use of coopl throughout.

An alternative procedure is to exploit the fact (noted
just below (8)) that the eigenvectors z,- of the Jacobi
matrix are related to the eigenvectors y{ of the S.O.R.
matrix by the relation

*/ = G£'JV (15)

Now the displacement vector gives us an estimate of the
dominant eigenvector of M^ and we can estimate G>7'
by using the ratio of the last two norms of displacement
vectors as an estimate of A. In this way we find an
approximation for the dominant eigenvector of the
Jacobi matrix, from which we may form a Rayleigh
quotient. This will give a good estimate of \x on account
of the well-known stationary property of the Rayleigh
quotient. It will furthermore be an underestimate since

\x = max
xT(L + U)x

xTDx

Hence if we use this approximation to /x to find an
estimate tok of wop, via equation (12), then oik will be
less than coop, and we will never have trouble with a
complex dominant latent root of MUi. It is possible,
particularly near convergence where round-off errors
play a significant role, that the new estimate for cjopl

will be smaller than the old one. In such a case the old
estimate is certainly the better and should be used.

Numerical experiments
All three techniques for finding a>op, have been tried

on three test problems. Since the solutions were known
we were able to calculate the norms of the error vectors
and these together with the relaxation parameters are
tabulated below. For comparison we also used to = wopl

throughout. In each case the zero vector was taken as

Table 1
Criteria for stopping the process

METHOD

Kulsrud \u>k — «Jfr_i| •

Carre cok — wk _, | <

New method v\ < (wk _, —

of improving to

CRITERION

^ 2 — <»k

20

2 — <x>k _ |

20

I)5

starting approximation and the iteration terminated by
Carre's test, that

\-vk

be less than the largest acceptable norm of the error
vector. For vector norm we used the Euclidean norm,

n 1/2

| |x | | = ( Ex?) , throughout. We followed Carre's

starting procedure, as described on pages 76 and 77 of
his paper. Kulsrud's method requires an underestimate
of CJOP, at the start and we used Carre's value, 1 • 375.
For the new method we iterate with a> = 1 just twice,
the minimum number that permits us to find a new a>
by the method already described. In all three procedures
a value of a>k+ , was found after twelve iterations with ojt

unless the criteria shown in Table 1 were satisfied in
which case no further improved estimates were found,
the iteration being completed with parameter u>k in
Carre's case and a>k in the other two cases. We make
no claim that these criteria are the best that can be
devised. The choice of numerical factors is particularly
arbitrary; the figure of 1/20 was suggested by Carre and
we have used the same factor in Kulsrud's technique to
give a direct comparison. The test used in the new
method is based on the assumption that — log?;*,
approximates the asymptotic convergence rate with
ua = cok and the fact that — log (ouk — 1) is certainly
less than the optimum asymptotic convergence rate,
—log (coopl— 1), so that if v\ < (u>k — I)5 we can expect
the asymptotic convergence rate to be improved by not
more than 20 per cent if iteration with o> = cuk is replaced
by iteration with o> = a>opl. In Kulsrud's method the
dominant eigenvalue of Ma may be complex, in which
case it is likely that the ratios of the norms of successive
displacement vectors will oscillate severely. To reduce
this effect we took for vk the geometric mean of the last
eleven ratios of displacement norms.

The first example considered was Laplace's equation
in a rectangle with five by forty internal mesh-points,
so that the matrix A has the block form

T I
I T I

I T I
IT I

I T
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Table 2

Results for Laplace's equation in a rectangle

ITERATOR
NUMBER

1
3
9

15
21
27
33
39
45
51

ITERATION
NUMBER

1
3

15
27
39
51
63
75
87
99

111
123

j

1
1
1
1
1
1
1
1
1

I
1
1
1
1
1
1
1
1
1

where T is the tridiagonal

— H I

1 - 4
1

_
and / is the unit matrix
test are summarized in

For the <

CO

•4667
•4667
•4667
•4667
•4667
•4667
•4667
•4667
•4667

CO

CO

•7625
•7625
•7625
7625
7625
7625
7625
7625
7625
7625

matrix

1
—4 1

of

•

' order
Table 2.

'"opt

logiolkl
0-96
0-66

- 0 - 4 7
— 1-63
-2-80
-3-98
- 5 1 9
-6-46
- 8 0 1

opt

logio||e||
1 -33
1-27
0-74

- 0 06
- 1 0 8
- 2 - 4 6
- 3 - 5 0
- 5 0 3
-6-38
-7-75

1
1

CARRE

CO

•0000
•3750
•3750
•4872
•4872
•4872
•4872
•4872
•4872

Results fot

1
1
1
1
1
1
1
1-
1-
1-
1-

of order 40,

•
1 - 4 _

40. The

logio

1
0

- 0
- 0
- 2
- 3
- 4
- 6
- 7

Table

Ikll
•07
•81
•03
•98
•22
•49
78

•12
64

3

1
1
1
1
1
1
1
1
1

KULSRUD

CO

•3750
•3750
•3750
•4752
•4752
•5078
•5078
•5174
•5174

Kulsrud's example

CARRE

co

0000
3750
6706
7422
7856
7856
7856
7856
7856
7856
7856

Iogio||e||

1-
1-
1-
0-

- 0 -
- 1 -
- 2 -
- 3 -
- 5 -
- 6 -
- 7 -

results of this

>econd problem we consider Kulsrud's

35
31
11
66
04
09
65
52
05
15
37 ]

]

This is

1
I
1
I
I
I
I
I
I
I

logio

0
0

- 0
- 1
- 2
- 3
- 4
- 6
- 7

KULSRUD

CO

•3750
•3750
•5568
•7918
•8253
•8253
8253
8253
8253
8253
8253
8253

\\e\\

•99
•74
•11
•10
•29
•56
•96
•42
86

logiolkll

1
1
1
0

- 0 -
- 1 -
- 2 -
- 3 -
- 3 -
- 5 -
- 6 -

-j.

34
30
11
74
16
23
13
03
99
13
23
03

1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1

of order 44 and of the

r- / A
AT I

BT
B
I
BT

B
I B

NEW

CO

•0000
•1488
•1488
•4514
•4514
•4514
•4514
•4592
•4592
•4592

NEW

CO

•0000
•1218
•6149
•7487
•7499
•7583
•7615
•7618
•7618
•7623
7623
7623

block

.
BT

METHOD

logio|k||

1
0
0

—0
- 1
- 2
—3
—4
- 5
- 6

V1ETHOD

logio

1-
1-
1-
0-
0-

- 0 -
— 1 -

- 2 -
- 3 -
- 5 :
- 6 -
- 7 -

form

/ B
BT I

a

07
•92
•43
•14
•20
•30
41
54
72
97

HI
35
33
20
86
19
63
65
79
97
24
52
83

- i

C
p

example of the solution of Laplace's equation in
cylindrical coordinates for the non-rectangular axially-
symmetric region shown in Fig. 1. We have modified
the grid slightly in order to obtain a symmetric matrix,
and use the finite-difference approximation

* (r + \K)j>(r +h,z)-\-{r- $h)<f>(r - h, z)
+ /•<£<>, z +h) + rcf,{r, z ~ h) - Arfcr, z).

The results are summarized in Table 3.

As our third example we took the very ill-conditioned
matrix considered by Engeli et al. (1959), page 100. Fig. 1 The finite-difference grid in Kulsrud's example
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ITERATION
NUMBER

1
3

15
27
39
51
63
75
99

123
147
171
195
219
243
267
315
363
411
459

CU

(0

1-9910
1-9910
1-9910
1-9910
1-9910
1-9910
1-9910
1-9910
1-9910
1-9910
1-9910
1-9910
1-9910
1-9910
1-9910
1-9910
1-9910
1-9910
1-9910
1-9910

opt

logiolMI
0-82
0-82
0-79
0-79
0-78
0-76
0-72
0-70
0-66
0-60
0-54
0-47
0-40
0-32
0-24
0 1 6

- 0 0 1
-0-20
-0-41
-0-61

Optimum S.O.R.

Table 4

Results for Engeli's example

CARRE

CO

10000
1•3750
1-6852
1-7664
1-8379
1-8985
1-9185
•9334

1-9334
1-9334
•9334

1-9334
1-9334
1-9334
1-9334
1-9334
1-9334
1-9334
1-9334
1-9334

lo&olMI
0-81 1
0-81
0-80 1
0-79
0-79 1
0-78 1
0-78 1
0-77 1
0-76
0-76
0-75
0-74
0-74
0-73
0-72
0-71
0-70
0-68
0-67
0-66

KULSRUD

CO

•3750
•3750
•4768
•7724
•9492
•9492
•9500
•9500
•9500
•9500

1-9500
1•9500
1-9500
•9500

1-9500
1-9500
[•9500
1-9500
1-9500
1-9500

logiolkll

0-81
0-81
0-80
0-80
0-79
0-78
0-77
0-77
0-76
0-75
0-74
0-73
0-72
0-71
0-70
0-69
0-67
0-65
0-63
0-61

NEW METHOD

CO

10000
1-2461
1-6513
1-7889
1-8524
1-9074
1-9118
1-9118
1-9151
1-9518
1-9784
1-9847
1-9876
1-9892
1-9900
1-9903
1-9903
1-9903
1-9903
1-9903

logiolkll

0-81
0-81
0-80
0-80
0-79
0-78
0-78
0-77
0-77
0-76
0-75
0-73
0-71
0-67
0-63
0-59
0-48
0-35
0-21
0 0 7

where

/ = n °1 A = ["-0-15046 61372 0-05119548301
" " ' ' ' 0-87877 37287 -0-09817 61429J'

B = r-o-IOOOOooooo 004721359551
L—0-84721 35955 -0-10000 OOOOoJ'

1= T-0-09817 61429 005119 548301
L-O-l' "-87877 37287 -0-15046 61372J"

Here we found that vk was often much larger than the
dominant eigenvalue of Maic and indeed was sometimes
greater than unity. In this situation the parameter a>k+ ,
is likely to be greater than wopl or even complex. We
avoided the latter situation by taking cuk+, = wk if
vk > 1, but made no attempt to avoid the former. The
fact that this does occur for the results presented must
be regarded as fortuitous. Presumably the trouble may
be avoided if we continue the iteration until the ratios
have, in some sense, settled down. Quite apart from the
difficulty of devising an automatic criterion for this
settling-down, we will have the disadvantage of a large
number of iterations with co less than its optimum, just
what we are trying to avoid. For this problem the new
method gave very satisfactory results, as shown in
Table 4.

Conclusion

The advantage of the new method is simply that success
can be guaranteed, and this advantage is shown clearly
by the third example. For a particular accuracy the
new method may require more steps than the earlier

methods, as illustrated by examples one and two. We
doubt, however, if the extra labour will ever be serious
and feel that this is a reasonable price to pay for the
additional security.

Appendix
Given a diagonal matrix Gp satisfying (3), with p # 1,

we may construct an ordering vector q = (q\,q2- • • <7«)
as follows. Since any scaling of Gp will not alter the
validity of (3), we first normalize Gp to have its first
element unity, say Gp = diag (1, g2, g3 . . . gn), and set
qx =z 0. Now suppose some off-diagonal element aUl,
is non-zero, then from (3) we find gh = pl/2 and may set
qh = ]. If some off-diagonal element ahh is non-zero
then gh = p if i2 > <i and gh = 1 if i2 < i\ and we
may set qh = 2 or 0. We continue in this way until we
have found all qt for which ; belongs to some subset /,
of the set N of integers 1,2 ... n, where /, is such that
there is no non-zero off-diagonal element au with only
one of / and j belonging to /,. If / , ^ N then we may
scale those gj for which je(N — / , ) , without altering the
validity of (3), to make some chosen gk unity and set
the corresponding qk to zero. We now find q, for all
iel2, another subset of N. Continuing, we eventually
find q-t for UI\ uI2u .. . Ir = N.
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Book Review
Numerical Solution of Partial Differential Equations, by

G. D. Smith, 1965; 179 pages. (London: Oxford
University Press, 25s.)

This book, intended mainly for students rather than for those
already well versed in numerical methods, presents, through
simple examples, the principal processes for obtaining
numerical solutions to second-order quasi-linear partial
differential equations, one chapter each being devoted to
equations of Parabolic, Hyperbolic and Elliptic type. Jn
addition there is an introductory chapter which includes the
development of finite-difference approximations for deriva-
tives, and one which covers the ideas of convergence, com-
patibility and stability of finite-difference schemes; and also
iterative methods for solving sets of linear algebraic equations.

The author states in his preface that he has tried to make the
main chapters independent of one another and admits that
this has led to a certain amount of repetition. For example,
the Jacobi, Gauss-Seidel and S.O.R. point iterative methods
for solving sets of linear algebraic equations appear three
times. In Chapter 2 they are applied in detail to a specific
example, complete with numerical results; in Chapter 3 they
are studied in more general form, and Chapter 5 presents them
briefly in connection with Poisson's equation. A good
understanding of these methods can be obtained from the
sections in Chapters 2 and 3 and surely these would have been
better presented together.

In Chapter 2 the main finite-difference methods for solving
Parabolic equations are explained and illustrated clearly with
detailed numerical calculations. Chapter 4, perhaps the
weakest section of the book, presents both the method of
characteristics and of finite differences for solving Hyperbolic
equations but might have gained something by the inclusion
of a section on first-order equations which appear only in the
exercises at the end of the chapter. The fifth chapter gives
the principal finite-difference methods for Elliptic equations,
including a section on relaxation.

Each of the four main chapters includes a very valuable set
of exercises with solutions outlined in most cases, and the
volume concludes with a list of references for further reading.

Most students should find that this book gives them a good
introduction to the subject but they may not be able to
understand some of the more advanced concepts, several of
which are not explained or illustrated as carefully as many of
the simpler ideas. As examples we might cite parts of the
section on characteristics of hyperbolic equations, the concept
of consistent ordering for sets of algebraic equations, and the
method of deferred correction which is dismissed in less than
a page. There is, however, sufficient of value to recommend
this as a student textbook, and it should also find its way on to
the book-shelves of most teachers of the subject.

H. C. JOHNSTON
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