
An investigation into direct numerical methods for solving some
calculus of variations problems. Part 1—Second order methods

By B. T. Allen*

Several direct numerical algorithms are proposed to solve the simplest general non-linear calculus
of variations problem. In this paper four new methods are described which approximate to the
solution with second order accuracy in terms of the step length. Results are given when the
methods are used to solve two non-linear and non-trivial problems.

1. The problem
The simplest calculus of variations problem is to find a
function y(x) in the range (a, b) which minimizes the
integral

\"f(x,y{x),y'{x))dx. (1.1)

/ is a given function of three variables. Boundary
conditions on y(x) at x = a or b may or may not be
given. In general, however, in this paper we have
considered them to be given. Problems arise in this
form in both scientific and industrial fields.

Most analytic and numerical methods of solving this
problem to date have used the fact that the problem is
equivalent to solving a boundary value, second order
differential equation. This equation, known as Euler's
equation, is derived in many well known texts (for
example Elsgolc, 1961) and is given byt

- yo)l2h).

or equivalently by

/'/33+//23+/13-/2 = 0.

(1.2)

(1.3)

The disadvantages of trying to solve the problem
numerically in this manner are that:

(i) the differential equation often turns out to have an
extremely complicated form;

(ii) the function /might be defined by numerical data;
in this case the partially differentiated forms, used
in Euler's equation, would have to be obtained by
rather tedious numerical procedures.

We have tried, therefore, to solve the problem directly
by numerically approximating the integral and not the

t Throughout this paper (Part 1 and Part 2) we use the notation
that a subscript on / means partial differentiation with respect to
that variable whose position is specified by the subscript. Thus
fa represents the function obtained when / has been partially
differentiated with respect to its second and third variables. This
is in preference to a more standard notation of the form fyy'. The
latter would have led to confusion over the meaning of an
expression of the form.

differential equation. In this paper (Part 1) we describe
those methods which have a second order error in terms
of the step length h. In Part 2 (Allen, 1966) we describe
more accurate methods which have only a fourth order
error term. As one might expect, there is a close con-
nection between these methods and numerical methods
for solving non-linear boundary differential equations.

Very little appears to have been published on the
numerical solution of this problem. Elsgolc (1961)
mentions Euler's approximation as a possible method of
numerical solution, but gives no details. Bellman (1957)
provides a method of maximization when in effect
Euler's approximation is used. This method was
examined, but in comparison to our own methods for
the reasonably smooth functions we were working with
it seemed to be fairly slow computationally. Some work
has been done using series, mainly by Ritz and Galerkin
at the beginning of this century, but their methods carry
out the integration analytically.

2. The general numerical procedure
In this paper we have considered five different approxi-

mations for solving this problem. However, the general
numerical procedure we have used is very similar in each
case; it is in fact similar to that commonly used in
solving non-linear boundary value differential equations.
The complete range is divided into short intervals and a
relationship is shown to hold over each of these sub-
intervals. These relationships are then used to solve the
problem over the complete range. We describe this
general procedure now.

We divide the range (a, b) into n equal intervals such
that the step length h = (x, — x;_,) = {a — b)/n. We
consider the value of y(x) only at points xr Let the
numerical approximation we get for j(x,) be called j>;.
y(x0) = yo = A and y(xn) = yn = B are given.

We now consider the problem over short ranges of
length 2h, and to simplify our notation we consider the
range (x0, x2). We now have to maximize the integral,

fkx,y(x),yXx))dx. (2.1)

One of the five methods we describe later approximates
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Calculus of variations problems

y(x) and y'{x) in terms of y0, yx, y2 and the integral (2.1)
by a function (f>(y0, yu y2). We now consider y0 and y2
fixed and choose yx so as to maximize this function.

In the methods we have devised we have assumed that
we can evaluate only the function / Thus if a partial
derivative of / is wanted, then it must be obtained
numerically. Therefore, to maximize with respect to
yu we must carry out the partial differentiation of the
function numerically and equate the partial derivative
equal to zero. This we do by writing either

+ «, y2) - <£(><» yu y2)}/e = o + o(e), (2.2)
or

= 0 + O(e2).
(2.3)

We chose to use (2.3) since this is more accurate. We
now have to choose a value of e so as to compromise
between the loss of accuracy due to round-off error in
the subtraction and the truncation error in the form
O(e2). We chose e = 10~4 since the number of signi-
ficant figures we were working with was 12 and the values
of/ and its derivatives were of the order of unity. This
would mean that the loss in significant figures due to
the truncation error O(e2) would be about four, and the
loss due to round-off error in the subtraction would
similarly be about four. We might expect that our
accuracy would be reduced to about eight significant
figures.

If we had used (2.2) a more suitable value of e would
have been 10 ~6 and we would have expected our
accuracy to have been reduced to six significant figures.

Similar relations can be obtained over other ranges
giving us n — 1 relations for the n — 1 unknowns
j i , . . ., j n _ |. Thus the problem can be solved.

We now have the numerical problem of solving a set
of non-linear recurrence relations of the form

<£,O;- I, yt, yi+ i) = 0, for i = 1, . . ., n - 1,

with yo = A and yn = B given. To solve this the
following standard technique of using trial runs was
used.

A value of y{ is guessed. y2 must then obey the
relation ifix(y0, yuy2) = 0. A regula-falsi method was
used to solve the non-linear equation in terms of y2.
Continuing this we find values for y3, . . ., yn. The value
of yn will presumably be incorrect but now a regula-falsi
method is used over the whole problem to find the correct
value of yx which gives a true value for yn. The non-
linear equations for yi+l are not difficult to solve as
good first approximations can be found by extrapolating
on previous values of y,.

3. Approximation 1
We first try the simplest possible approximation

J fix, y, y')dx = hf(x0, y0, (yt - yo)/h)

(3.1)

This approximation was used originally by Euler to
obtain Euler's equation. We have approximated both
the integral and the derivatives so that they give rise to
errors O(h). Numerical partial differentiation with
respect to yx gives the recurrence relation

/(*o> Jo, Oi + e - yo)/h) -f(x0, Jo, (ji - e - yo)/h)

-Ax i, yx - e, (y2 -yi+ e)lh) = 0, (3.2)
which is then used to solve numerically the problem as
described in the previous section.

To investigate the error in this recurrence relation,
however, we must use the recurrence relation obtained
analytically. Partial differentiation of (3.1) with respect
to yx gives

5
iy-{f(xo> Jo, (yi - yo)/fi) +Ax\, yu (y2 -

o, Oi - yo)/h) - / 3 ( x , , yu (y2 -
\, yu O2 - yi)/h),

d
xx, yu (y2-yi)/H) - - r / 3 (* i , yu O2 -

=1 Mx{, yu yl) — r^hixu yu y[) \ +

JJ £ (3.3)
The first and dominant term is Euler's equation. We
have assumed this to exist and to give rise to the unique
solution of the problem. The first term will therefore
be zero for a correct value of y{ and thus the other
terms represent the error in the approximation which in
general is O(h).

However, when

J/33) - Wi"f33 + hh J |U
is zero (which it will be when / has no terms in y and y'
higher than second order, there is no yy' term, the
coefficient of y'2 is constant and the coefficient of y' is
linear) then we will have an error of only O(/i2). This
was the case for our test functions (i) and (ii), explaining
our unexpectedly good results for these problems. These
are not really very useful results because Euler's equation
could be solved still more easily in these cases.

4. Approximation 2

Here we use the approximation

r*2 h
f(x, y, y')dx = Tf(x0, y0, (—3y0

y2)/2h)

Ah

2, (Jo 3y2)/2h) (4.1)
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Calculus of variations problems

We have used Simpson's rule as the integration formula
and approximated yo, y[ and y2 as well as possible in
terms of y0, j , and y2. The numerically partially
differentiated form is again used to obtain the numerical
results. Analytic partial differentiation gives
3 d

4 ^ (approx. in (4.1))

> )'2, O'o - Ayi + 3y2)/2h)

- y2)/2h)}/2h

, y\, 0'2 — yo)/2h), (4.2)

, yu yj) — {hi*!, yi, y'2) —Mx0, yo, yo)}/2h
+ £h2y'i'fii + (£hy'C + -hh2/])/^^, y2, y2)

- (W{' - -h yWfuiyo, y0, yo) + O(A4),

+ &*yi'fi3 +ih2y1"~f33 +-hh2y*f33 + O(h*).

(4.3)
The first term is again Euler's equation, but this time our
error term is in general of order h2. Experience with
second order boundary differential equations then leads
us to expect an overall error of O(/i2) which our results
on our test problems confirm.

From (4.2) we see that our approximation is the same
as would be obtained by approximating Euler's equation
by a central difference approximation to the total
derivative, using the values of / 3 at x = 0 and 2h and
using the usual approximations to yo, y[ and y'2. It
might now appear that Euler's equation would in
general prove a better starting point. In fact, however,
it would have been difficult to have foreseen some of the
computing procedures which we shall later obtain direct
from the integral.

5. Approximation 3

This method is very similar to the previous method
except that we now use a Gaussian fourth order inte-
gration formula instead of Simpson's rule. Thus

Oo(l +
(-yo(2

+ hflxi
(yo(l —

( y o ( 2 -

V3) + 4.
+ V3) +
+ ///V3,
V3) + 4
V 3 ) - 4^

y\ + y2(i -
• 4^i - J2(2

Fi + y2(i +
1 + ^2(2 +

V3))/6,

V3))/6,
\/3))/2A,

(5.1)
Using this Gaussian integration formula in effect reduces
the total number of function evaluations by a third.
The integration still has an error of only O(hs).
Axt-h/VS), Axi+h/y/S), y'(xt-h/V3) and
y'(x + h/y/3) are approximated as well as possible
using Lagrangian formulae in terms of y0, y{ and y2.

Our numerical results are again obtained by solving the
recurrence relation derived from (5.1) by numerical
partial differentiation.

We can again show that the recurrence relation
obtained by analytic partial differentation has an error
of O(h2) but we will not give the somewhat lengthy
details here. Our method this time corresponds to an
approximation to Euler's equation

where the total derivative is derived by evaluating / 3 at
Xy — h/\/3 and x{ + h\^J3. f2 is this time taken as the
mean sum of the values at xx — h/\/3 and x( + hj\/3.

6. Approximation 4
This approximation is fundamentally different from

the previous types. Here we divide the range in two
and approximate the integral over each section. This
gives

(f(x, y, y')dx =

x2)/2, y2)/2, (y2 - yi)Jh)

(6.1)

using the midpoint rule over (x0, xt) and (xlt x2). In
contrast to the previous two methods we can extend this
approximation to the complete range (a, b). Thus

f V , y, y')dx = hf{a + h/2, (y0 + yt)/2, (yt - yo)/h)

+ hf(a + y , (y, + y2)j2, {y2

+ . . . +hf(b-h/2,(yn_l+yn)/2,

(yn-yn-x)lh)+O{h2). (6.2)

We could not have done this in the previous two methods
as the intervals then overlapped. This could give us the
chance of carrying out our maximization by a different
process. For instance we could use a general n-
dimensional maximization procedure or use dynamic
programming. Such methods appear to be inefficient
for the functions we have considered but there may be
less regular functions for which they would be useful.
In fact our numerical results are still obtained by solving
the recurrence relation derived from (6.1) by numerical
partial differentiation.

As this is a somewhat different type of approximation
we give the details when the analytic partial differentia-

1 d
tion is carried out. Thus T r— (approx. in (6.1))T r

2, (y

+

+ yi)l2, (y2 - ydlh)}/2

+ y2)/2, (y2 - yt)/h)

O'o + yi)l2, Ci - yo)/h)}IK (6.3)
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Calculus of variations problems

y\ + -h

'[ f22 - £ h2y'['f31

dxJ

(6.4)

In general the error is OQi1) and our results on our test
problems again confirm this. The approximation to
Euler's equation, which corresponds to this method,
evaluates the total derivative in Euler's equation at \h
and § h. It differs from the two previous approximations
in that yQh) and y(%ti) are approximated only in terms
of the two nearest co-ordinates and not all three.

7. Approximation 5
As in approximation 4 we divide the range in two but

this time we evaluate the integrals using the trapezoidal
rule instead of the midpoint rule. This gives

2\fix, y, y')dx = hfix0, y0, iy, — yo)/h)

yu 0>i - yo)/h) + ¥ixu y,, iy2 - yx)jh)

y2> iy2 — y\)lh) + oih3). (7.1)

Using the trapezoidal rule instead of the midpoint rule,
however, means that we have doubled the number of
function evaluations required to solve the problem.
Similar comparisons can be made with Euler's equation
but we shall not give the details here. The method can
again be used directly over the complete range (a, b).

8. Numerical results
These methods were programmed in ALGOL and

then compiled and run on an English Electric KDF 9.
This machine represents the mantissa of a real number
by 40 bits and the exponent by 8 bits. All the methods
call on the user to supply the boundary conditions and
an ALGOL procedure for the function/ and to specify
the step length h. As a first investigation into these
methods the programs were not written to be quite as
economical in the number of evaluations of / as they
might have been.

All the methods were tried on the four following
problems with the stated boundary conditions.

(0 / = iy')2 + I2xy, j(0)=0, X 0 = 1,

(ii) / = iy')2 — y2 — 2xy, X0)=0, X0=sin(l)— 1,

xexp(-6(x

"(1+J2)

-6(x-0-4VV

X 2 —

4)2)>

0-5, XI) = 0,

- x))i-i/> - 3/) - (± y)\

X0) = i,

(iv) / = 4(3 + sin n(

In addition Euler's equation for problem (iv) was
solved using a standard central difference approximation.

Problems (i) and (ii) give rise to linear differential
equations with solutions x3 and sin x — x, respectively,
and were used, therefore, more to test the methods for
programming errors than for comparing their efficiency.
In particular they belong to the special case for which
approximation gives an error O(/i2) as will be seen from
(3.3). Methods 2 to 5 gave predicted results. As the
solution to (ii) is x3 all the methods gave exact results
(within round-off error) for any value of h. This gave
us a chance to look at the round-off error by itself. As
we expected, it appeared to be negligible, being only a
little larger than the last place of decimals.

Problem (iii) arises from the question of how a ship
should use its fuel in order to cross an ocean in a
minimum time. The way the problem arises assures us
of a well-behaved solution. The analytic solution is not
known, but when the various methods are plotted for
various values of h the true solution is taken to be a
very obvious limit as h becomes smaller. Euler's
equation for this function is so large and complicated
that its numerical solution would be very difficult. In
Table 1 are shown the errors at x = 0 • 5 for the various
methods and for different values of h. The errors are
only approximate. The error for h = 0-1 with approxi-
mation 1 was not calculated. Errors at other points
were similar, although approximations 2 and 5 showed
up in a slightly better light. Clearly approximations 2
to 5 have an overall error of O(/i2) and approximation 1
an overall error of O(^). Richardson's extrapolation
could have been used to obtain yet moie accurate
results.

Problem (iv) represents an inventory problem. This
again assures us of a well-behaved solution. In this
case Euler's equation is comparatively simple, and our
methods were compared with a standard method of
solving the differential equation using the central
difference formulae y- — ( j ,_ ! — 2y{•+ yi+i)/h2 and
y'i = 0',+ i — j>,_ [)/2h. In Table 2 are shown the
errors at x = 0-5 for three values of h. Again the error
for larger values of h with approximation 1 was not
calculated. Errors at other points were quite similar
although the error in Euler's equation was less in some
places.

Several values of e were tried and it was found that
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Calculus of variations problems

Table 1

Errors at midpoint for problem (iii)

Approximation 1

Approximation 2

Approximation 3

Approximation 4

Approximation 5

A = 0 l

-0-000245

0-000072

0-000078

- 0 - 000295

h = 0 0 5

-0-000900

- 0 - 000061

0-000021

0-000022

-0-000072

h = 0025

-0-000400

-0-000014

0-000007

0-000007

-0-000016

h = 00125

-0-000200

- 0 - 000004

0-000001

0-000002

-0-000004

values in the range 10~5 < |e| < 10~4 gave nearly
identical results for each method and function. At each
stage the recurrence relation was solved to 10 decimal
accuracy, more than adequate for the final accuracy we
wished to achieve. For these functions five or six trial
runs were necessary before the correct value of yx could
be found to give the correct boundary condition on yn.
The number of trial runs was naturally independent of
the method.

Table 2

Errors at midpoint for problem 4

Approxi-
mation 1

Approxi-
mation 2

Approxi-
mation 3

Approxi-
mation 4

Approxi-
mation 5

Euler's
equation

/i = 005

0-000644

-0-000240

-0-000293

0-000574

-0-000369

h = 0025

0000157

-0-000073

-0-000083

0-000142

-0-000093

A = 0-0125

0-001000

0-000038

-0-000019

-0-000023

0-000032

-0-000025

9. Comparison of methods
In comparing accuracy we see that approximation 1

(Euler's) would be much too inaccurate for most
problems. There is little difference between approxi-
mations 2 to 5 although 3 and 4 seem slightly better.

To compare the efficiency, however, we must also
compare the amount of computing done in each method.

As we said before the number of trial runs with
different values of _y, is independent of the method so
we merely compare the amount of work done at each
stage. The bulk of the computing work is done in
evaluating the function, and we will only in fact con-
sider this. Suppose we must do q times as much work
to solve the associated function in Euler's equation. The
first column in Table 3 then shows the number of
function evaluations (or the equivalent) necessary to
evaluate the recurrence relation. It usually took three
evaluations of the recurrence relations to solve them, so

Table 3

No. of function evaluations

Approximation 1

Approximation 2

Approximation 3

Approximation 4

Approximation 5

Euler's equation

4

6

4

4

8

1

12

18

12

12

24

3<7

8

18

12

8

16

3?

5

12

8

5

10

3<7

the second column, being three times the first, is the
number of function evaluations used per step. How-
ever, the methods were not programmed quite as
efficiently as they might have been as sometimes the
evaluation of a function was duplicated in evaluating
the recurrence relation again. The third column shows
the number if this saving had been made. The fourth
column shows the number of function evaluations
necessary if we had approximated our partial differentia-
tion by (2.2). Such a method might, however, have led
to significant round-off error.
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Calculus of variations problems

Clearly, of the direct methods approximation 4 is
best both as regards simplicity of programming, the
number of function evaluations, and accuracy.

There remains the comparison of approximation 4
with standard methods of solving boundary-value
differential equations. The relative efficiency very much
depends on the form of the function / If / gives rise
to a comparatively simple differential equation then it is
best to use it. For a function like (iii), however, obtain-
ing Euler's equation is tedious and the resulting function
associated with the equation, takes more than five times
as long to compute. In cases such as these, and in
problems where/is defined at least partly by numerical
data, these direct methods seem to have some use.

As we have said before, we could have arrived at the
same recurrence relations by approximating Euler's

equation in the form — (/3) — f2 = 0 in various ways.

It would not, however, have been easy to guess at an
approximation which only requires four function
evaluations of/ Perhaps the real use of this investiga-
tion is to stress the fundamental unity of the calculus of
variations problem and the boundary value differential
equation, and so complete our knowledge to some
extent in this field.

This research was carried out while I was the holder
of the I.C.T. Research Scholarship. Complete ack-
nowledgements will be found in Part 2.
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Correspondence

To the Editor,
The Computer Journal.
Sir,
Recent discussion on the computation of rotational levels of
rigid asymmetric top molecules (Rachmann, 1965 and Jones,
1966) calls for some comment. As Jones points out,
Rachmann's approach of reducing the determinantal equation
to an explicit polynomial is both unnecessary and leads to
ill-conditioning. The method proposed by Jones for this
problem, while stable, is, however, inefficient because it is
too general and does not make use of the particular features
of this problem. The asymmetric tridiagonal matrix of this
problem is a quasisymmetric matrix since the diagonal
elements are all real and the off-diagonal elements are both
real and all positive (Wilkinson, 1965).

Denoting the diagonal elements by kh the lower off-diagonal
elements by bt and the upper off-diagonal elements as unity,
a similarity transformation leads to a symmetric tridiagonal
matrix with diagonal elements kt and off-diagonal elements
bji. Any method suitable for symmetric tridiagonal matrices
can now be used. The LLT method recently published (Fox
and Johnson, 1966) is particularly efficient for this purpose.
The procedure eigenvalue, after slight modifications to correct
a few obvious misprints and to remove a goto instruction
leading to a label inside a for statement, was used to solve
the 0+ matrix discussed by both Rachmann and Jones.
Values of the energies agreeing to 8 or 9 figures with those
computed by Jones were computed in 2 seconds on KDF9.

As a check and to compare the relative efficiency of several
methods, the 0+ matrix was solved by two other methods.
The Sturm sequence-bisection method (Wilkinson, 1962) and
a general program for the eigenvalues and eigenvectors of a
real matrix using the QR Algorithm (Francis, 1961) gave

results identical to 9 figures with those computed by the LLT

method in 8 and 35 seconds, respectively.
Taking advantage of the tridiagonal form of the matrices

in this problem leads to a substantial improvement in
efficiency.

Yours faithfully,
B. J. DUKE.

University Computing Laboratory,
University of Newcastle upon Tyne,
1/3 Kensington Terrace,
Jesmond,
Newcastle upon Tyne, 2.
19 May 1966.
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