Algorithms Supplement

As already announced, the B.C.S. Algorithms Supplement, formerly published in The Computer
Bulletin, will in future be published instead in this Journal, All correspondence concerning the
Supplement should be sent to the Algorithms Editor:

Published algorithms

The following algorithms have been published in the Com-
munications of the Association for Computing Machinery
between September 1965 and December 1965.

263* GOMORY 1
An improved version of Algorithm 153 GOMORY
which determines the integer solution of a linear
programming problem with integer coefficients only.
264* INTERPOLATION IN A TABLE

Evaluation of a function by polynomial interpola-
tion in a table of values.

265 FIND PRECEDENCE FUNCTIONS

PSEUDO-RANDOM NUMBERS

Generates a pseudo-random number in the open
interval (a, b)

266

267 RANDOM NORMAL DEVIATE

Produces two independent random variables x1 and x2
each from the normal distribution with mean 0 and
variance 1. This procedure uses 266.

268 ALGOL 60 REFERENCE LANGUAGE EDITOR

269 DETERMINANT EVALUATION

Evaluates a determinant by triangularization with
searching for pivot in row and with scaling of the rows
of the matrix before the triangularization.

FINDING EIGENVECTORS BY GAUSSIAN
ELIMINATION

270

271 QUICKERSORT

Sorts the elements of an array into ascending order
by continually splitting the array into parts such that
all elements of one part are less than all elements of
the other, with a third part in the middle consisting of a
single element.

PROCEDURE FOR THE NORMAL DISTRI-
BUTION FUNCTIONS

272

* The numbers 263 and 264 were each inadveriently assigned
to two algorithms. When giving references to these algorithms,
please be careful to do so unambiguously.

211

P. Hammersley

Northampton College of Advanced Technology
St. John Street

London EC1.

Algorithms

Author’s note on Algorithms 10 and 11 (below)

Neville’s method of evaluating the Lagrange interpolating
polynomial has been so widely used that there would appear
to be general agreement with Lance (1) that it is the most

(1) LanNce, G. N. Numerical Methods for High-Speed Com-
puters, p. 142.

satisfactory method for automatic computation. An alter-
native scheme is that of Aitken and a comparison of both
methods, which are the same in principle and different only
in detail, shows that Aitken’s method results in a more
efficient ALGOL procedure than Neville’s method.

For the set of n + 1 sample points {(xo, fo), (x15/1), .- -
(x.. f,)} the two methods of evaluating the interpolating
polynomial for some specified argument u may be described
essentially as follows.

NEVILLE
for i:=n — 1 step — 1 until 0 do
for j:= 0 step 1 until / do
SU=sU1+ (@ —xUiD x (U + 1]
—fUD x (xln — i+ j1—x[iD;
Nevyille: = f10];

AITKEN

for i:= O step 1 until n — 1 do

for j:= i + 1 step 1 until ndo
FUY =Sl + (u — x[i) X (fUi] —fUDI(xj) — x[iD);
Aitken 1= f[n];

After taking all possible steps to improve the run-time
efficiency of both processes by following the principle of
never causing a computer to perform, more than once, any
operation for which once is sufficient, the respective times
for 5000 entries to each procedure with n = 5 were AITKEN
80 seconds NEVILLE 90 seconds.

AITKEN J. Boothroyd,
Computing Centre,
University of Tasmania.

Algorithm 10.

real procedure aitken (x, y, arg, n,m); value arg, m, n; array x, y;
real arg; integer m, n; comment array y [0: n) contains sample
values of a function at corresponding values of the argument
contained in x[0: n] which is assumed to have been sorted in
ascending order. The procedure yields an approximation to the
function at the specified value arg by evaluating an mth order

707 LINIRIAL 1 110 199nB £Aa +7+07ar/t 1 Zzc/amnnientifitionniiion-dno-antianese /- ecdnil 111011 DanNeoll IMOA



Algorithms Supplement

polynomial (m < n).

assignment nm.= n occurs.

For arg << x[0] the procedure extrapolates using x[0], x[1], . . .,

x[m]

For arg > x[n} the procedure extrapolates using x[n — m),

xln —m+ 11, ... ,x[n];

begin integer i, j, mlessl; real fi, zi; real array z, f[0: m];
integer procedure setrmin(L); label L;
begin integer i;
for i:= 0 step 1 until # do if arg << x[i] then
goto found,
ii=n;

SJound: if arg = x[i] then begin f[m]:= y[i]; goto L
end;
ir=i—-—m-=2—1;
setmin:= if i <O thenOelseif i +m>n
then n — melse i
end setmin;
if m > n then m:= n; j:= setmin (our);
for i:= O step 1 until m do begin z[/):= arg — x[j};
SUli=ulj);j:=Jj -+ 1 [end;]
end;
mlessl:= m — 1;
for i:= O step 1 until mless! do
begin fi: = f[i}; zi:= z[i];
for j:= i - | step 1 until » do
SUl=fi+ zi x (fIj] — @i — =[]
end;

out: aitken:= [m]

end

Algorithm 11. EQUIPOL J. Boothroyd,

Computing Centre,

University of Tasmania.

veal procedure equipol (xbase,y,arg,n,mh);
value xbase,arg,m,nh;
real xbase,arg h; array y; integer mn;
begin integer i,j,mlessl; real jh,fi; array f[0:m];

ifm>nthenm:= n;i:= enrier((arg-xbase)[h) —m—?2;

J:= if i<<O then O else if i+ m>n then n—m else i;
for i:= 0O step | until m do f[i]:= y[i+/1;
arg.= arg—j X h;
mlessl:= m—I,;
for i:= O step 1 until mless/ do
begin fi:= f[il; jh:= h;
for j:= i+ 1 step 1 until m do
begin f[/]:= fi-+are X (fl/1=f}jh;
Jjh: =jh4-hend ;

The subset of m + 1 points used in the
evaluation are suitably chosen to be evenly distributed about
the value of arg. If the requested value of m exceeds n, the

212

arg:= arg—h
end;
equipol: = f[m])
end equipol

Note on Algorithm 4. TWOBYTWO I. D. Hilland M. C. Pike,
Medical Research Council,
Statistical Research Unit.

Two errors in this algorithm (published in The Computer
Bulletin, Vol. 9, p. 56 (Sept. 1965)) have been discovered.

The section of program immediately before the label CHECK 1

“if method = 1 then begin E:= dl1[d2;”
should read
“E:=dl1fd2; if method = 1 then begin”

The original version can lead to a considerable waste of
computing time but not to an incorrect result.

Immediately after ‘“end sumterms;” the statement
“count:= 1" should be added. The original version fails if
a =0 and method =2 since in this case the test for
N < count is made while count has not been given a value.
This error was discovered by D. T. Muxworthy of the
Norwegian Computing Centre.

Editor’s Note

In recent editions of the Communications of the Association
for Computing Machinery the “‘Revised Algorithms Policy—
May, 1964 has been published, outlining certain require-
ments to which all submitted algorithms must conform.

No similar policy has yet been defined for the Algorithms
Supplement. However, all algorithms submitted for publi-
cation must be submitted in duplicate and be accompanied
by a driver program, a set of test results and a detailed
description of the origin and purpose of the algorithm.

All algorithms which are accepted for publication are
published in the reference language. Hence, features which
cannot be directly translated into the reference language
must not be included in an algorithm. For example

“m 1= ndiv2”
may be included but
“print newline x,y”

may not. However, such features may be included in the
driver program.

707 LINIRIAL 1 110 199nB £Aa +7+07ar/t 1 Zzc/amnnientifitionniiion-dno-antianese /- ecdnil 111011 DanNeoll IMOA





