One man’s meat: Part 2—now let’s pretend

by F. 1. Musk*

This is the second of a series of papers which attempt to define one computer user’s philosophy.
The philosophy is extended here from the provision of information for decision making into the

decision area itself.

In Part 1 of this series (Musk, 1966) the following
philosophy was advanced.

“To an industrial concern, the initial function of
computing is to provide management at all levels with
all relevant but no other data, in the most easily
assimilated form, at the precise moment when a policy
decision has to be taken.”

CRESTS (Craig, 1966) was considered to be a tool
useful in urging the translation of this philosophy into
practical terms.

The philosophy as it stands has its limitations. It is
but one step removed from ““data processing” which is
the mere aping of earlier procedures for accountancy and
routine administration, even though these procedures
have been streamlined by systems study. It is true that
it has a beneficent effect upon the problems of decision
makers. It can save time in data digging, a crucial
advantage when, for example, developing the design of a
new factory. It can, where time must be taken by the
forelock, limit to some extent the area of risk. Still, it
impinges upon the decision area only tangentially. It
pretends to inform, but never to advise.

If another tenet is to be added, this must deal with the
decision area itself. This is not to assume the functions
of management. A machine can never do that, unless
management is concerned only with routine decision.
A computer can be an aid to decision making. Manage-
ment can take a “‘computer-aided” decision.

Let us assume that the following is the second tenet in
our philosophy.

“To an industrial concern, the second function of
computing is to provide management with a means of
calculating a choice of decisions, and to give an
indication of the likely results of each choice.”

The first tenet provides for an appreciation of an
existing situation. The second indicates a choice of
suitable future actions, and the results likely to accrue
from each such action. It says no more than that
computers should be used to implement the fruits of
operational research investigations. There is nothing
novel in this idea, but of all the thousands of case histories
that have been talked about, written about, since the
Operational Research Club became a society, it is to be
wondered how many were implemented, how many once

* Computer Dept., Courtaulds Ltd., Matlock Road, Coventry.

213

implemented are still extant, how many once implemented
and still extant are effective.

The University of Aston Designate (when it was the
Birmingham College of Advanced Technology) once sent
a group of students who had been introduced to statistical
quality control, out into the field (certain engineering
companies in the area) to learn the practical lessons of
quality control from firms which had embraced the
technique a year or two ago. They reported back that
very few firms on their list still used the technique, and
those with pretensions to do so were simply enacting a
hollow ritual.

What had happened? Like the production machines
themselves, statistical quality control must be regularly
maintained, else it will break down. Things change.
External conditions, and conditions in the machine shop,
change. Old products evolve, and so do their specifica-
tions, or they are supplanted by new products. The
SQC man moves on and tells his successor what to do,
but not why he is doing it.

The same fate awaits optimum schemes developed by
the use of operational research, unless they are regularly
tended. The bases on which they were originally con-
ceived are gradually eroded away, and their pure forms
become encrusted with secondary trivia. Unfortunately,
and particularly if they were programmed (at great effort
and expense) for a computer, such decayed schemes,
although now far removed from the optima they were
contrived to attain, are likely still to be workable, since
the cunning operational research worker tested them out
for stability. That an SQC scheme is no longer valid can
be proved by complaints from customers, but that a
computerized operational research scheme no longer
attains optimum yield, or productivity, or joint cost of
stock holding and changeover, is often very difficult to
determine.

What can be done? Let us assume that it is the
responsibility of someone to keep fresh the data on which
the computerized scheme relies. This can be an auto-
matic updating of the program parameters derived from
our constantly refreshed Data Base. But not only do the
data change. So do manufacturing processes, both in
machine renewal and technique. So also do sales
patterns and management policy. The need for such
change presents a formidable problem in program
maintenance. Organizations in which computerized

20z Uolel €1 Uo 3senb Ag G/ L 90%/€ 1.Z/€/6/a10me/|ulwod/woo"dno olwspeoe//:Sdiy Woly papeojumoq



Now ler’s pretend

operational research schemes develop most readily tend
to be the most vibrant of their kind. They react most
quickly to changes in their environment, and as a result
their production processes are turbulent streams of
change, in which optimum decision schemes must be
supremely adaptable if they are to remain valid and
retain their original direction.

Some operational research schemes, but not many, are
capable of solution by such wooden methods as linear
programming. Computer programs of this nature
require only the continual refreshment of their data.
How do we cope with the others?

According to Spock, children at play are learning the
skills required in adulthood. Sand-table exercises and
tactical exercises without troops are still considered
necessary pretences for the training of army officers.
We play business games in a competitive atmosphere to
teach fundamental precepts to potential managers.
Wherever the real thing is either dangerous or costly,
men immediately resort to mock-ups and models.
Analogy is inherent in us. So the idea of simulating the
behaviour of factories under the stress of a variety of
production loads, or of a transport fleet with a variable
collection and delivery pattern, or a pilot plant, or an
overloaded road system, or the flow of paper work in an
office, or of a whole firm struggling for survival in an
economic environment, is not strange to us.

The physical causes of change in an organism (say a
monkey or a weaving shed) are relatively easy to set down
one by one. What is difficult is to predict the complex
patterns which emerge when all these causes are working
simultaneously. If we had a simple means of building
a working model of the system, feeding in the elements of
change continuously in all their rich complexity, we
could pretend to change planning policy, or product
loading, or customer behaviour, or stock holding, or
documentation—anything. The result would be an
opportunity to study, over long periods of simulated
time, the several effects of various policy changes, on the
system under review.

In effect, a simulation program on a computer is just
such a working model. All computerized operational
research schemes simulate the behaviour of the system

References

Musk, F. 1. (1966).
Craig, T. K. (1966).

214

they pretend to optimize, even formalized stock control
or scheduling schemes, and so they are handled by the
computer essentially as simulation programs. But think
—to maintain a simulation routine—what a tedious task
by machine, symbolic or mnemonic coding!

Let us return to our second tenet. We are not saying
to management, “You tell us what policy you will adopt
and we shall show you the likely result”. We are not
saying “Leave it to us and we shall tell you your optimum
policy, take it or leave it”. We do say “You give us your
discrete policy field, and we shall supply the likely result
of each policy, as well as providing, if you want it, the
optimum policy, even if it lies outside your policy field”.

It is obvious that we must already know intimately the
system within which policy decisions are going to be
made. We would already have, if at all possible, an up to
date motion picture of the system in the form of a simu-
lation program. Apart from the difficulty of keeping the
program up to date, we do not know what policy question
is likely to be thrown at us. If we were working in a low
level language, the policy question could so disrupt the
simulation program as to require a virtual rewrite, but
implicit in the service we are to give is the fact that a
decision is to be made now, not six months from now.
We would be in a better situation if we had a high level
simulation language. Let us assume, though, that we
have a computer without such a facility. This happens
to most of us, and it happened to us.

We knew of course, that simulation languages existed,
but not for our computer, and so we determined to devise
one, and to write a compiler for our computer. This was
a Honeywell 400. Dr. Tocher says it is extremely
difficult to find a decent acronymic starting with the
initials of his organization. I believe him, but we are
more fortunate, and we called our simulation language
CAPS, or Courtaulds All Purpose Simulator. It was in
fact a development of CSL.

With some further development of the language,
Honeywell made themselves responsible for the com-
piler for the H200 series, and it is now named Extended
CSL. The language development was devised by, and
both compilers written by Alan Clementson, who des-
cribes them in the following paper.

“One man’s meat: Part 1—the uses of adversity”, The Computer Journal, Vol. 9, p. 1.
“CRESTS—Courtaulds Rapid Extract, Sort and Tabulate System”,

The Computer Journal, Vol. 9, p. 3.

20z Uolel €1 Uo 3senb Ag G/ L 90%/€ 1.Z/€/6/a10me/|ulwod/woo"dno olwspeoe//:Sdiy Woly papeojumoq



