Extended Control and Simulation Language

By A. T. Clementson*

This paper describes the provision of compilers for an extended version of Control and Simulation
Language for the Honeywell 400 and the Honeywell 200 series computers.

C.S.L. had been pubiished (Buxton et al, 1962) and
available for two years before Courtaulds decided to
redevelop it for their own computers (Courtaulds Ltd.,
1964). Up to that time, C.S.L. had only been available
on a service bureau basis and was rather expensive to
run; Courtaulds started this work because they were
anxious to have a complete range of software available
at their own installation.

These realizations of C.S.L. were not, like the first,
prompted by a particular urgent project so that we
could afford to sit back and carefully study the methods
to be adopted and the language used. Considerable
care was taken to extend the source language to attempt
to overcome the limitations of C.S.L. discovered by
previous users. This paper will concentrate on these
extensions and the compiling methods used, since the
original language has already been published in this
journal (Buxton et al., 1962). The paper describes two
projects simultaneously—the provision of compilers for
the Honeywell 400 and the Honeywell 200 series (the
latter being sponsored by Honeywell Controls Limited).
Each compiler was written and tested by one man
working for one year. Many of the extensions which
E.C.S.L. allows are catered for, in rather different ways,
in C.S.L. 2 (Buxton, 1966) which was produced by IBM
during the same period.

CS.L. was originally compiled into FORTRAN.
This was clearly undesirable in this case because the
performance of the FORTRAN compilers for these
computers was not known at the time. Secondly, many
of the limitations on C.S.L. were necessary only because
of the restrictions on FORTRAN. But by far the most
important reason was the need for an improved and
efficient communication between the computer system
and the programmer. In particular we wished to make
it easy for the programmer to proceed successfully with-
out any knowledge of other, more basic, programming
languages.

The operating system

We have found that because C.S.L. programs are
written by non-programmers, and have relatively short
lives, that the number of operator errors is unusually
high. With this in mind, and also considering the
program writer’s unfamiliarity with the computer, a
completely automatic system of operation was devised.
It is a simple, and far from original, system because
this is what the circumstances required.

The operation is controlled by “system control cards”
which are easily recognized by an asterisk (*) in card
column 1. Columns 7-15 contain the directive to the
system. These directives are:

Cols. Cols. Action
7-15 16-72
REMARK none—remark typed on operator

console
DATE 12/03/45 enters date into system
COMPILE title expects that a CSL program
follows—this is compiled
executes the last program entered
reads in an object program from
binary cards
finds an object program from
library on tape n

EXECUTE
GET C title

GET Tn title

KEEP C punches out binary card deck of
object program

KEEP Th adds or updates program into
library on tape n

LIBRARY adds machine code functions to
library

POST produces a POST MORTEM
dump of last program executed

WAIT causes system to stop until
operator presses “RUN”

END RUN terminates run.

The language

Extended C.S.L. assumes that a simulation program
is written, or rather presented to the computer, with the
following block structure.

BLOCK 1 Definitions
BLOCK 2 Initialization
BLOCK 3 (Headed by ACTIVITIES

statement) Activities

BLOCK 4 (Headed by FINALIZA-
TION statement)

BLOCK 5 (Headed by DATA state-
ment) Fixed Data

Finalization

The execution of a program first carries out the
Initialization (which automaticaily sets CLOCK to zero)
and then enters the monitor. The monitor scans the
time cells and advances time to the first (or next) event
(the smallest positive T-cell). Then the activities are

* Department of Engineering Production, University of Birmingham, Birmingham, 15.

¥202 I4dy 61 uo 1senb Aq £81901/S 1 2/S/6/2101e/|ulwoo/wod dnoolwspede//:sdiy woli papeojumo(q

E.CS.L.

carried out. At the end of this scan of the activities the
program returns to the monitor. This loop continues
until CLOCK reaches the value specified in the
ACTIVITIES statement; the Finalization is then carried
out.

The difference between this structure and the original
C.S.L. structure is that Blocks 4 and 5 have been added
and the ACTIVITIES statement has been modified to
the form

ACTIVITIES {cell-name)

where {cell-name) specifies the ultimate value of CLOCK.
This increase in the number of sections of the program
is both an aid in programming and a help to the com-
piler. (We are planning to add another block—a block
of EVENTS (Laski, 1966)—which will further simplify
writing and speed up execution.)

~ Block 3—the activities—is further divided into sub-
blocks each corresponding to one activity. An activity
is a section of program concerned with a particular
section of the model, (e.g. the activity of loading a lorry).
The first statement of each activity is

BEGIN <{descriptive comment)>

The statements within an activity are normally a
series of tests followed by some actions. These corre-
spond to the conditions necessary for the commencement
of the activity and the action of the activity (e.g. if the
lorry is available, has a driver and petrol, then the load
can be moved into the lorry). In E.C.S.L. any test is
written as a statement which, in the event, will be true
or false. If the statement is true, execution proceeds to
next statement. If, however, the statement is false, a
branch occurs. The destination of this branch may be
explicitly mentioned as a statement number but is
more usually implicit. On unindented statements (i.e.
statements not contained in a loop) a failure will, unless
an explicit destination is given, cause control to leave
the activity (or sub-block). For an indented statement,
however, the destination is implied by the context of the
loop containing it. (C.S.L. allowed the user to specify
a success branch also but this has been dropped—a
GOTO would be used in this context) Where state-

ment numbers are used, they are local to the activity in
which they occur. Thus the only communication
between activities is via the data which is, of course,
common to the whole program.

Blocks 2 and 4 may also be divided into the sub-
blocks if required. In which case the same structure
exists. Equally some of the blocks might not be present
at all. For example a program consisting only of blocks
1 and 2 is very common; it is an ordinary—i.e. non-
simulation,—program written in the language of C.S.L.
(Such programs have been found quite successful.)

The definitions

The definitions in C.S.L. are similar to, but more
extensive than, those in FORTRAN. Variable names

216

consist of an unlimited string of letters—although only
the first six are recognized. All variables are taken to
be integers unless otherwise specified. The CLASS

statement defines a group of entities (with or without
time cells). Extended C.S.L. (in common with C.S.L.2)
has discarded the attribute notation of C.S.L. preferring
the use of associated arrays (e.g. instead of having one
cell attached to each entity which we had to remember
contained, say, its size, we now use an array SIZE (see
below). For each class there may be one list of sets.
Each set is capable of holding, if necessary, the whole
class. The entries in a set are restricted to the one class
(unlike C.S.L.2, for example) so that an efficient method
of execution can be used. Set names can now be sub-
scripted to form a vector of sets, e.g.

CLASS SHIP 60 SET PORT 10

defines a class of 60 ships and 10 sets PORT 1, PORT 2,
. . ., PORT 10 (note that the inconvenient full stop
between class name and index is now optional because
all full stops (except between the two digits) are ignored).

Histograms may also be subscripted in the same way,
(see below).

The definition of arrays is now somewhat more
flexible. Each dimension may now be specified either
as a constant or by a class name e.g. (following above
example)

ARRAY CARGO (SHIP, 3)

defines a (60 x 3% matrix of integers. The advantage of
this is that when a program is being used experimentally
less changes have to be made. The clarity of the pro-
gram is also somewhat improved.

Boolean variables and strings are now available, e.g.

BOOLEAN TRUTH 7
STRING TITLE 15

define a vector of 7 Boolean variables and a string of
15 characters.

Sets

The basis of C.S.L. is the logical formulation of
complicated problems, and it was decided that most of
the extensions would be to assist in this aspect of the
work. The framework of any C.S.L. program is the
manipulation of sets (or queues). Most of the new
features of the language of E.C.S.L. are in fact designed
for this purpose. The Honeywell compilers for C.S.L.
both extend the language of the sets and also improve
the method of internal implementation.

The extensions in the language largely result from
allowing set names to be subscripted, thus allowing
several queues of similar types to the represented by the
same name followed by a subscript. This allows one
section of program to manipulate a number of queues
at the same time. For example, if we were simulating a
shipping system consisting of half-a-dozen ports we

¥202 I4dy 61 uo 1senb Aq £81901/S 1 2/S/6/2101e/|ulwoo/wod dnoolwspede//:sdiy woli papeojumo(q

E.CS.L.

would previously have had to have written one section
of program for each port. Now, by using subscription
we could do it all in one section.

The set subscription is written in exactly the same
way as entity subscripting, i.e.

{set name) {. 7> (primary)
where
{primary) ::= {const) | {cell name) | ({expression))
One other minor area of improvement in the language

occurs in the listing of actions and tests which involve
sets. For example, the statement:

SHIP I FROM PORT 7 INTO ATSEA

would previously have been written as two separate state-
ments. This simple expedient has been found very helpful
in preventing the “loss’ of entities due to source program
€rrors.

The C.S.L. compiler used a very crude method to
represent the sets inside the computer, which was largely
tuned to the need to translate into FORTRAN as an
intermediate language. As it was decided from the
beginning that we would directly translate into machine
language, it was now possible, and also obviously very
desirable, to improve the way in which sets were mani-
pulated. In accordance with this the method adopted
on the Honeywell 200 is in keeping with advanced list
processing methods without in any way changing the
source language either in expression or in concept.

The set consists of a vector of two character words—
one word for each entity in the class. If the entity is
not in the set, then the word is zero. If the entity is in
the set, then the word contains the name (or subscript
number) of the entity which follows it in the queue;
unless it is the last member of the queue, when the
word contains minus one and has an item mark on it.
The item mark on the last member of the set allows
this to be found with a single machine instruction. The
necessary routines for manipulating these sets are about
20 times faster than the previous methods, and use
considerably less storage. It is largely due to this
improvement that the compiler is now one of the most
efficient compilers on the computer.

Arithmetic

Following C.S.L. the arithmetical statements are
virtually the same as those in FORTRAN with the
addition of the incremental versions (i.e. {cellname)
+ {expn) is used as meaning {cellname}> = (cellname)
+ {expn)). Although floating point is not often used
in the simulation work, we have allowed the use of
floating point in the language—even to the extent of
permitting mixed mode expressions. C.S.L. allowed
general expressions to be used as subscripts. Extended
C.S.L. permits the use of any arithmetic expression at
any point where a numerical value is required, although

B

217

it must sometimes be in brackets to avoid ambiguity.
(For an example see next paragraph.)

Loops and test chains

The loops in E.C.S.L. are controlled in three ways.
Firstly the incremental form, similar to the FORTRAN
form:

FOR (namey (=7 <expn;), <expna) <expns?

indicating that the variable {(name) (any variable having
an integer value—even if subscripted) is to take firstly
the value of {expn;) then the value of {expn;> + <expni)
(or 41, if {expn;) is missing), etc. until the next value
would exceed the value of (expn,>. (Note that if
{expny) is greater than {expn,) the loop is not entered
at all.)
The second form of loop, originated by C.S.L.1 is:

FOR <(name) {=7> {set name)

indicating that the variable name is to go successively
through the values of the class subscripts in the set name
in the order that they occur in that set. The loop is not
entered at all if the set is empty. While this is the same
as in C.S.L., its power is very considerably increased by
the relaxation of the restrictions on the control variable
name and the fact that the set name can now be sub-
scripted.

A third form of loop control has been added to the
repertoire in E.C.S.L.

FOR <{name) {=7> {class name)

indicating that the variable name takes the values
1, 2, 3,...up to the number of entities in the class.
The convenience of this method lies in the fact that if
the size of the class is to be altered during the develop-
ment of the program this statement need not be altered.
In addition it indicates to the reader what is being done
in the loop rather more clearly than did the previous
notation.

These three forms of loop control have been illustrated
in the FOR statement. However, C.S.L. introduced a
number of other forms of loop. All these new forms
have been perpetuated in E.C.S.L., but whereas in the
original only the set controlled type was permitted, we
allow all three forms of loop to be used.

In the original C.S.L., if a FIND loop was contained

in a FIND loop, the value of the control variable of the

inner loop appropriate to the selected value of the
control variable of the outer loop was lost. As the
control variable may be subscripted, then this problem
disappeared. For example:

FIND I = INDEPOT MIN (SIZE (I))
FIND J(I) = SHIFT K MIN (RATE (J()))
MAXTONAGE (J(I)) GT SIZE ()

¥202 I4dy 61 uo 1senb Aq £81901/S 1 2/S/6/2101e/|ulwoo/wod dnoolwspede//:sdiy woli papeojumo(q

E.CS.L.

This finds the smallest lorry in the depot for which
there is a driver whose “maximum tonage” permits him
to drive it. If there is more than one such driver
available in this shift choose the one whose rate of pay
is least. (C.S.L.2 has solved this problem in a more
elaborate way which would not be possible on a machine
as small as we have available.)

Histograms

In extended C.S.L. histograms serve two purposes.
The first obvious use is to record the statistical informa-
tion produced during the running of the program. This
is accomplished by the statement:

ADD expression, histogram

In the original version of C.S.L., histograms which
specified empirically a probability distribution for
random number sampling were manipulated in a different
way from histograms. This distinction was found to be
very inconvenient and it was therefore necessary to
modify the concept of a distribution. The solution
adopted was to make distributions and histograms
equivalent—both taking an intermediate form. The
random number sampling made it necessary to specify
exactly which values would be obtained and therefore it
was decided that we would specify the mid-points of the
histogram intervals instead of extremes. Thus the ADD

instruction illustrated above, means find the interval
whose value is nearest to the value of the expression
and add one to the frequency of that value. In order
to make the use of histograms and distributions more
flexible, it was decided that these also should be sub-
scripted. The subscripting takes exactly the same form
as in sets. This in fact simplifies the form of the ADD

statement and of all other statements referring to
histograms.

Input-output

The major shortcoming of C.S.L., as originally con-
ceived, was that it made no addition to the input—output
facilities of FORTRAN, despite the fact that the simu-
lation program requires many special facilities. Since
we were no longer translating C.S.L. into FORTRAN,
we replaced the FORTRAN terminology for input—
output of a completely new set of instructions. These
new instructions are, however, still very similar to the
FORTRAN form. The main difference is that the
format specification is included in the IfO statement
rather than forming a separate statement. In order to
simplify the specification of format it was decided that
a standard form would be adopted. Except where
otherwise specified this standard format is what
FORTRAN would describe as 110 (or F10-5 for real
numbers). An I/O statement consists of a key word
(Print, Read, Punch, Readtape and Writetape) followed
by a list of variable names. This list may be punctuated

218

by commas (which are just separators), slashes (which
indicate that a new line is to be commenced), double
asterisks (which indicate the beginning of a new page)
or a specification of a new standard format, (this
standard form is written as *n—where »n is a number
specifying a field width). This new field width is con-
tinued until either a new specification is encountered or
the end of a statement is reached.

Variables mentioned in the list can be any C.S.L.
variables. Array names without subscripts indicate
that the whole array is to be printed. As in FORTRAN,
loops may be included within the list, the only difference
being that the contents of the loop are enclosed in
brackets but the values of the control variable are
specified outside the closed brackets. The specification
of these values may take any of the three forms indicated
above for loops.

The way in which titles and headings are specified is
by including them in inverted commas, for example,

PRINT “JOB HEADING”/

The CHECK statement as originated in C.S.L.1 is
of course still available in E.C.S.L. being one of the
many aids for program development.

Experimental design

An extremely important feature of simulation is that
any single run of a program is just one sample of those
results that may be obtained in any investigation. It is
essential that the program be run many times to produce
accurate results. The objective will be to obtain averages
which are sufficiently accurate. Many writers have
shown ways in which accuracy can be improved by
“cheating” methods such as antithetic facilities and
control variates which are now in common use. But
many simulation systems do not provide facilities to
assist in their use. We therefore decided, since the
provision of antithetic variables is in machine language
terms extremely trivial, that we should provide this in
extended C.S.L. Arrangements are made so that if the
initial number in any random number stream is negative,
the statement will produce multiple antithetic runs and
therefore gain a considerable improvement in accuracy.
So that the language could allow for the program to be
run many times in the form of an experimental statistical
design, we decided that we would divide the program
into three sections rather than two previously adopted.
Originally in C.S.L., initialization was followed by a
group of activities and it was the responsibility of the
writer of the program to provide the final print-out and
to stop the program. However, since the statement
labels used are all local to a particular section it was
not possible to return to the initialization from any
activity. This defect was overcome by providing the
section called finalization which is only entered when the
clock reaches the predetermined value. This pre-
determined value is specified in the activities statement.
In addition to this two new statements were provided;

E.CS.L.

RESTART which means go back and re-run the initial-
ization; and FINISH which means at the end of this
time-cycle go straight to the finalization. The provision
of this finish statement was to allow the early termination
of any run in which fatal errors had been encountered,
while still allowing for the output data to be produced.
If a program is to be run many times it will require the
reinitialization of a great deal of data. In particular,
the initial state of the simulated system will probably
be the same in every run. It is therefore desirable for
this data, or at least the part of it which is fixed, to be
incorporated in the program inside the computer so
that the same data does not have to be read in repeatedly.
1t was therefore decided to add a new section of program
known as the data sector in which the initial values of
fixed data would be specified. This data follows the
finalization. Each card of this section contains, starting
in column one, the name of a variable. Following this
name on the card will be the value or values of this
variable (if the name is an array, for example, one
number must be specified for each cell of the array).
This data is automatically reloaded at the beginning of
the initialization of each run (i.e. at the beginning of the
execution and immediately after any restart).

Program development in E.C.S.L. is aided in five
ways. First by providing a very fast but efficient com-
piler, with extensive diagnostic routines. Secondly, the
four sense switches are used to produce extra output
during execution to assist in debugging the program as
follows:

Switch 4 When this is on the descriptive comment
following each BEGIN statement is printed
as the activity is entered.

Switch 2 When this switch is on the check statements
are operative.

Switch 3 When this switch is on a complete dump of
all the variables, sets and histograms is
printed after each execution of the monitor.

Switch 1 When this switch is on the value of the

clock is printed after the monitor is
executed.

Thirdly, if requested during compilation, the printing
of the descriptive comment at the beginning of each
activity is followed by the number of the statement last
executed in the previous activity—thus providing a
simple trace ability.

Fourthly, many types of error detectable during
execution cause the dump to occur automatically,
including the activity, statement number and cause of
error.

Finally, a post-mortem dump may also be called by
system card or manually by the operator should an
error actually stop the computer.

Compiling method

The original version of C.S.L. was compiled from
C.S.L. into FORTRAN on IBM 1401 producing a tape

219

suitable for input to the FORTRAN compiler on the
7090. This method was originally adopted so that a
compiler could be written quickly. Now that the lan-
guage had been proved to be a success it was obviously
necessary to write further compilers which were not so
roundabout in their methods. On the Honeywell 400
computer Courtaulds produced a compiler for C.S.L.
into the machine assembly language. The assembly
program was incorporated within the compiler so that
the assembly proceeded automatically, after compilation.
It was found that this process was rather inefficient
since the assembly part of the program took about
twenty times as long as the compilation. It is also
apparent that much of the work done by the compiler
is unnecessarily duplicated by the assembly program.
The assembly is now simply an extra part of the com-
pilation. For example, the machine language addresses
which are allocated to data are easily calculated during
the first part of compilation as this simply involves
counting the number of variables. The major ineffi-
ciency of separating compilation and assembly comes in
the considerable volume of information which has to
be put on to and read from the magnetic tape, for
storage between these stages. It was found, for example,
that the average C.S.L. instruction produces about
thirty machine language instructions, so that the mag-
netic tape holding the symbolic version of the program
was rather long. It is thought that the excessive
assembly time was largely due to this. The main problem
in combining compilation and assembly is that the
allocation of branch addresses cannot be made imme-
diately. However, a special system was devised to
overcome this problem which did not involve an extra
pass of the data. The actual translation of C.S.L.
statements into machine language, and the production
of a binary version of the program, results in con-
siderable savings in time. Further savings come from
the fact that the “constants” used to produce the binary
instructions, and therefore the compiler itself, took up
a smaller amount of storage. This enables the number
of compilation passes to be reduced from 3 to 2 (the
assembly being incorporated into the second pass).
Passes 2 and 3 of the H.400 compiler had to be separate
only because of the small amount of core storage avail-
able. This introduced many inefficiencies into the
system. These have now been removed by eliminating
the third pass.

The first pass of the compiler accepts the C.S.L.
source statements, divides them into words according
to rules of C.S.L. The definitions are then translated
into instructions to lay out word marks in appropriate
area storage. Statements which are not definitions are
searched for key words, indentations and destinations,
and are written on the magnetic tape for input to pass 2.
During this pass a source language listing is produced
which contains all the diagnostics which are discovered
to be necessary during pass one. It was decided to
produce the listing at this early stage so that the peri-
pheral operation of printing could be overlapped with

¥202 I4dy 61 uo 1senb Aq £81901/S 1 2/S/6/2101e/|ulwoo/wod dnoolwspede//:sdiy woli papeojumo(q

E.CS.L.

the operation of card reading. This decision probably
halves the compilation time, but it means, however,
that any diagnostics produced in pass 2 have to be
separated from the listing. The savings in machine
space in pass 1 due to direct translation to binary have
enabled a very extensive diagnostic to be incorporated
in this pass. In fact the diagnostics produced by the
compiler are as extensive as most FORTRAN systems
although no special passes are used. This is possible
only because of the convenient structure of C.S.L., e.g.
the checking of the validity of branches can easily be
done in the single pass because of the indentation. The
FORTRAN rule that we must not jump into a loop,
becomes simply a rule that the indentation of the state-
ment to which we were jumping must be less than or
equal to the indentation of the branch statement. The
fact that the labels are local to an activity and that the
terminology of C.S.L. makes it unnecessary to use very
many labels means that a complete table of label
references can be accumulated during the compilation
of an activity and comprehensively checked at the
end of an activity. The manipulation of sets is
very extensively checked since it was found in earlier
versions of C.S.L. that the majority of programming
errors occurred in this area. The most popular un-
diagnosed error in the past was the changing of a set
while it is controlling a loop. While this was not
detected by the compilers it had unfortunately the
habit of getting the program into a never ending loop
during execution.

The second pass of the compiler largely consists of a
number of mutually recursive subroutines. The recur-
sive nature is necessary because of the generality of
expression permitted in the C.S.L. statements. How-
ever, this in fact simplifies the compiler rather than
complicating it, allowing for an efficient fast compiler
to be provided in only 16K characters of storage.

Sample program

As an example of a complete E.C.S.L. program the
author has provided the following, which is the simu-
lation of a three-stage production belt.

CLASS TIME ITEM 100 SET ONLINE 3, BIN,
1 INPROCESS 3
CLASS TIME OPERATOR 3

References

ARRAY STATIONWIDTH (3), C(3)
HIST STNOUTPUT (3, 1, 1) INTERARRIVAL 3
1 (25,0, 1)
HIST FREETIME 3 (25,1,1) JOBTIME (20,1, 1)
HIST PICKUP 3 (10, 0, 1) OPTIME 3 (20, 1, 1)
CLASS TIME COMPLETEOPN 3
READ STATIONWIDTH, FEEDTIME, LENGTH,
1 STRA, MINTIME, C|[JOBTIME ITEM
100 LOAD BIN
T. FEED = 1
ACTIVITIES LENGTH
BEGIN REJECT ITEM
FORI=1,M
FIND A ONLINE. I. FIRST
T. ITEM. A LE 0
ITEM A FROM ONLINE I INTO BIN
OR CONTINUE
BEGIN TO NEXT STATION
FORI=1,M
T OPERATOR IEQ 0
FIND A INPROCESS I FIRST
ITEM A FROM INPROCESS I INTO ONLINE
1 I+ 1)
T.ITEM A + STATIONWIDTH (I + 1)
ADD I, STNOUTPUT
AND — T. COMPLETE. I. INTERARRIV, I
T. COMPLETE I = 0
OR CONTINUE
BEGIN WORKING
FORI=1,M
T. OPER TOR. I LE 0
FIND A4 ONLINE I FIRST
ITEM A FROM ONLINE I INTO
1 INPROCESS I
ADD —T. OPERATOR I, FREETIME I
T OPERATOR I = MINTIME + (T. ITEM.
1 A4+ C()) + SAMPLE (JOBTIME,
2 STRA)/(STATIONWIDTH (I) + C(I))
ADD T. ITEM A, PICKUP POINT I
ADD T. OPERATOR I, OPTIME I
OR CONTINUE

FINALIZATION
OUTPUT, STNOUTPUT, (INTERARRIVAL) I = 1,
1 KJ(FREETIMED I= 1, M

2(PICKUPI)I=1, M, (OPTIMEDI=1,M
END

BuxtoN, J. N. and Laski, J. G. (1962). “Control and Simulation language”, The Computer Journal, Vol. 5, p. 194.
— (1964). Courtaulds All Purpose Simulator, Programming Manual, Courtaulds Ltd., Coventry.

Buxron, J. N. (1966). “Writing simulations in CSL*, The Computer Journal, Vol. 9, p. 137.

Laski, J. G. (1966). Letter to Editor, Operational Research Quarterly, March 1966.

¥20¢2 I4dy. 61 -U0 3senb Aq £81901/5 1 2/S/6/2101e/|ulwoo/wod dnoojwapede//:sdiy woli papeojumo(q

