
An approach to executive system maintenance
in disk-based systems
By R. F. Rosin*

The use of disk files as the resident store for executive system components has presented particular
problems in the areas of system integrity and system maintenance. The former is easily met with
conventional techniques, but the latter is more difficult because of the need to optimize disk-
allocation at the time the system is edited in order to minimize access time to system components.
However, the time required to produce an optimally allocated system edit is prohibitive for
debugging purposes. An approach to solving this problem is to develop a quick patch editing
facility which can be used at any point in the job stream for debugging purposes, and to use the
conventional, slow facility only when a permanent change is needed. A particular implementation
of the quick editor is described in detail, and the extension of this kind of facility for time-sharing
systems is discussed.

1. Introduction
As disk files become readily available at attractive

prices, they are being used more extensively for storage of
executive system components. This leads to several
potential problems which are outlined in the next section
of this paper. The succeeding section consists of a
description of a solution to one central problem as it was
effected on an IBM 7090/7040 Direct Coupled System.
The last two sections of the paper contain a discussion of
extensions of this approach and its applications to more
general multi-programming systems, and a presentation
of results and conclusions.

Disk files have shown several advantages over tape files
for storage of system records. The long access time
often required to obtain a record in a tape system can, in
general, be reduced from seconds to milliseconds. This
leads to a second positive feature of disk-based systems
in that the number of components in an executive system
can grow quite large at little or no increase in system
overhead, since access time will remain relatively constant.
Of importance, also, is the fact that whereas tapes tend to
wear and become unreliable, disk files are quite imper-
vious to such effects. Therefore, the inconvenience and
expense of preparing fresh system tapes on a regular basis,
often daily in heavily used systems, is avoided.

On the other hand, disk systems do offer certain
problems which must be handled differently than in tape
systems. These generally fall into two categories,
protection and maintenance.

2. Potential problems in disk-based systems
2.1 System integrity
Protection of a disk system requires that no user be

able to modify the system, purposely or inadvertently,
thus preserving the integrity of the software. Also, a
user must not be able to gain access to, or modify any
other user's program or data. Protection in tape
systems is accomplished: (1) by making the tape units
holding the system records inaccessible to the user, (2)
by making the input and output streams one-way (e.g. the
input file cannot be backspaced), and (3) by placing a
mark in the input stream which only the system can cross.

In order to accomplish this, rather elaborate schemes
have been devised both in hardware and software to
prevent the user from accomplishing certain input-output
manipulations. For example, in some hardware, un-
authorized attempts at I/O manipulation will interrupt the
computer.

In disk-based systems, comparable protection devices
must be employed. Since many different kinds of
records (e.g. system input, user scratch area, translators,
etc.) can exist in the same physical disk file, integrity
protection requires that certain tracks, and not tape units,
must be removed from the realm of user access and
control. This is usually accomplished by partitioning
schemes and central I/O software systems similar to those
used in tape-based systems. The designer must be careful
to preserve flexibility while guaranteeing protection.

2.2 System maintenance
System maintenance, the second area of potential

problems in disk systems, cannot be treated so simply as
it is in tape systems. Compilation of the records con-
stituting the system, establishing the linkage between
them, and transforming them into a machine-readable
form are mutually similar in both types of system.

However, the format of the system records, the random
access characteristics of their eventual storage medium,
and the potential size of the system itself can lead to
problems in preparation of the system files, a process
usually called system editing. The first of these problems
is that the system records should appear on disk in
locations such that the total seek time for any job or set
of jobs to be run will be kept to a minimum. If, for
example, the monitor and loader are at opposite extremes
of the disk, in terms of read-head motion, then it is
likely that time will be expended in waiting for certain
areas of disk to be physically accessible to a read-head.
The editor should alleviate such difficulties.

There exist disk files which allow reading and writing
in the so-called "cylinder mode"1 in which corresponding
tracks on adjacent disks are referenced in sequence
automatically. This feature allows loading of system
components in a chain, with only one seek and one read

Department of Engineering and Applied Science, Yale University, New Haven, Connecticut, U.S.A.

242

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/3/242/406217 by guest on 19 April 2024



System maintenance

command. This results in great savings over the use of
files in which every system record must be chained
together from independent tracks, and the chain pro-
cessed by a software routine. On the other hand, this
creates some additional problems in efficient allocation of
the system and other records to disk tracks, and, there-
fore, increases editing time.

To further insure integrity of the system, the editor
should produce a back-up tape of the newly generated
system. Good practice often dictates that this tape must
be purposely loaded by an operator to replace the previous
version of the system on disk. This allows those respon-
sible for system maintenance to examine the printed
results of the edit in order to obtain some degree of
confidence in the newly created system before it is used.
In many cases it is this same tape which is used as input
for the next edit (i.e. this is the tape against which
changes are edited).

As the system becomes large, the editing process is
quite time consuming. A 7094/7044 Direct Coupled
System with only a few components can require many
minutes of computer time for such a process. To this
time must be added the appreciable time required to
load the tape onto the disk after having ascertained the
success of the edit.

All of this time can be absorbed moderately well by an
installation which uses relatively static software and does
not intend to expand its facilities, i.e. an installation
which seldom needs to edit. On the other hand,
installations which are constantly extending the scope of
their software, for example expansion of the subroutine
library, find that the time spent in disk editing can be
intolerable. This is particularly true during the debug-
ging of a system component, which often must take place
in the final system environment and not as a "job in the
system". In this latter case a separate edit must be
executed each time a set of modifications is to be tested.
Proper system organization can alleviate some, but not all,
of this expensive processing by allowing complete check-
out of a component in other than the final environment.

3. One solution to the system maintenance problem
3.1 Environment in which the solution was effected

3.1.1 Hardware

The solution to be discussed was developed for use on
the IBM 7094/7040 Direct Coupled System (DCS).* In
this configuration, the 7094 acts as a slave to the 7040 to
the extent that it generally is incapable of any independent
input-output. The 7040 monitors the job flow, pro-
cessing the input stream, output stream and all tape, disk
and unit record I/O requests, and the extensive system
I/O queues maintained on the disk file. To accomplish
this, the transmit (TMT) command of the 7040 has been
modified to allow 94/40 transmission on a core-to-core

* Actually, any combination of 7090-94/7040-44 can be considered.
No attempt is to be made to describe fully the design of this system.
See Ref. 2 for greater detail.

basis at 8 /zsec per word. (The comparable rate using a
7044 is 5 /xsec per word.)

However, there is one feature of this system which is an
important exception to the I/O dependence of the 7094.
That is the ability of the 7040 to initiate a scatter-read
from disk directly to the 7094 without further 7040
intervention. In this way, system records (and, in the
cases where appropriate software has been developed,
user records) can be loaded into the 7094 in rapid order.
This facility is constrained to the extent that the record to
be read must be contained in one cylinder and have the
necessary channel commands interspersed at the appro-
priate junctures.

The 7094 and the 7040 have the ability to interrupt each
other at will, and, using the modified TMT command,
can communicate by means of blocks of code. This is,
in fact, the way all 7094 input-output requests generally
are processed. To facilitate this communication, since
the 7094 does not process a TMT command, upon
interrupt the 7040 examines and interprets the contents
of locations 228 and 238 in the 7094. Such an interrupt
of the 7040 by the 7094 is called a "HEY" and is accom-
plished by execution of a BTTE (beginning of tape test
on channel E) command.

3.1.2. Manufacturer supplied software
DCS software supplied by IBM includes 7094 IBSYS

with a modified input-output executor (IOEX) which
issues appropriate HEYS instead of actual I/O commands.
The IBJOB system, consisting in large part of the
monitor, IOCS, FORTRAN-IV, MAP, COBOL and the
subroutine library, is supported under IBSYS. Also
included in DCS software is DCMUP, the control
program which is always present and active in the 7040.
It is the latter program which monitors total system
activity.

The system editing facilities supplied are rather
extensive. The primary facility is a three-phase pro-
cessor which:

1. Modifies the distributed tape
2. Produces a new system tape
3. Reformats the output for optimum use of the disk.

As mentioned earlier, this can often be time consuming.
However, two quick edit facilities are also provided.
One allows DCMUP to be loaded with patches which
will remain in use until DCMUP is reloaded, thus
allowing checkout of new and temporary installation
facilities without performing an edit. It is also possible
to patch any component of IBJOB on a one-shot basis,
again without editing. These facilities constitute a
major capability to alleviate the need for time consuming
edits as described in Section 2.2.

3.1.3 Additional software
It is assumed here that the vast majority of computing

centers are not content with total reliance on software
provided by any manufacturer. While one or more of
these companies may set the de facto standards of the

243

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/3/242/406217 by guest on 19 April 2024



System maintenance

industry, it is not true that they monopolize leadership
of the computing field. Even the most understaffed
computer center adds to the initial subroutine library,
while other centers go so far as to ignore completely the
programming facilities provided with the hardware.

The situation at Yale, for example, dictated that
FORTRAN II had to be made available due to the large
number of users with heavy investment in programs
written in that language. This is hardly a unique
situation in the ranks of DCS installations. Thus,
another subsystem at the level of IBJOB was made
available. There have been many different approaches
to implementing this facility which is illustrated by the
fact that Yale had actually two completely independent
FORTRAN II subsystems, one of which has been phased
out but was necessary early in the change-over from a
previously available 709 system.

Most university computing centers and some industrial
installations find their users have need of languages
which offer more power, flexibility and novelty of appli-
cation areas than FORTRAN. Yale has added to its
total system the MAMOS subsystem developed at the
University of Maryland. This system, as modified at
Yale3 includes much of the University of Michigan
Executive System facilities4 (MAD, UMAP, MADTRAN,
Library, IPL-V, SNOBOL) and the ALGOL and SLIP
languages.

Thus, the Yale Computer Center had an IBSYS system
with three subsystems other than IBJOB.* None of
these additional systems can be modified or tested using
the IBJOB patch facility, yet they are subject to frequent
modification. Due to the size of the total system, a
full edit, including reloading the newly created system
tape, requires about 30 minutes. Clearly, the IBSYS
editing and patching facilities are not as flexible as one
would like considering the environment.

3.2 The solution to Yale's maintenance problem
(DEDIT)

3.2.1 Objectives
In the light of the situation just described, it was

decided to explore the possibility of providing additional
editing facilities to enable modification and replacement
of any system record in an expeditious manner. (The
question of making a permanent change in a similar way
will be treated in Section 4.) Note that the IBSYS
facilities described earlier do not allow temporary replace-
ment of a component, only modification of existing code.

Any editing program written had to run in the normal
job flow on the 7094. As discussed earlier, this facility
had to ensure the complete safety of the current system
and all other jobs in any active queue. For example,
a job waiting in the print queue must be processed
successfully regardless of any changes being made in the
system by a later job. Likewise, all subsequent jobs
must be completely unaffected.

* Since this paper was written the IBM Sort, the IBM 360
Support Package and PUFFT (Purdue University Fast Fortran
Translator) have been added as subsystems, leaving a total of six.

The ability to conform to IBSYS editing facilities was
mandatory, so that changes debugged in the temporary
patch editor, called DEDIT, could be incorporated into
a full system edit without modification.

IBJOB, MAMOS and one of the FORTRAN II sub-
systems all operate as described in Sections 2.1 and 2.2.
The second, since discarded, FORTRAN II system
did not follow the I/O conventions of DCS, i.e. employ
HEY codes. As a result, it was accommodated into the
system as a non-standard subsystem and was not stored
on the disk in a form to be loaded directly into the 7094.
It was decided that the new editing facility should handle
only "direct-loading" subsystems since the majority of
installations use only this form of subsystem and the
only non-direct-load subsystem at Yale was soon to be
abandoned.

3.2.2 Implementation strategies

In order to discuss the strategy which was used, a few
details of DCMUP (the 7040 control program) must be
explained. In order to locate a system record on the
disk, DCMUP has available in core a double entry table
consisting of pairs of names and initial track addresses of
system components in the order they would appear if on
a system tape. Also included are all-zero word pairs to
indicate file marks, and "*EOT" to indicate the end of
the table. Non-direct-loading components have negative
track addresses, and, therefore, can be distinguished
easily from those the editor is to be able to process. A
backup copy of this table is available on track 0 of the
disk.

What must be done in order to change the system is:
(a) prepare a new cylinder (or portion of a cylinder) with
the desired component, and (b) change the track address
in the corresponding entry in the system name table in
DCMUP. Using the IBSYS job concept5 which allows
processing several segments serially in one job with
integrity of I/O files preserved between segments, one
can first edit and then execute programs to evaluate the
changes made. To guarantee system integrity three
constraints must be applied. First, DCMUP itself
cannot be changed (except for the system name table).
Second, any change to the system name table must be
deleted at the end of 7094 job processing by reloading
the original table from disk. Third, any information
written on disk by DEDIT must not endanger any files
which are not completely processed, such as in the input
and output queues.

The first constraint is handled easily by code in
DEDIT. The second requires that DCMUP sense the
end of a job in which DEDIT has been used and reload
the system name table from disk, presenting a minor
problem since the editor is to run on the 7094.

The final constraint is overcome by allocating 10 disk
cylinders (400 tracks) permanently as user scratch areas
and for DEDIT, making them unavailable for system
records and queues. (These tracks are available to the
user through appropriate scatter read-write routines in
the subroutine library of each subsystem.) Since 10

244

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/3/242/406217 by guest on 19 April 2024



System maintenance

cylinders were reserved, the editor has the power of
modifying up to 10 system components in any job.

As mentioned earlier, direct-loading system records
contain channel commands indicating the initial 7094
address and block length of each element. Each
command appears immediately preceding the element it
is to load. A final termination command immediately
follows the final element. It was decided that prepara-
tion of very long elements would be much more cumber-
some than construction of the new system record on a
460 word track-by-track basis. Therefore, every track
being prepared by DEDIT has an initial channel
command with a word count of 459 or less.

Records being modified are read in and written out
immediately on a track-by-track basis until the terminal
channel command is encountered. At this point any
modifications are chained onto the record in sequence as
described in the preceding paragraph. Records thus
modified can be loaded for testing in future segments
with modified locations being overwritten as loading
proceeds into the newly extended chain of channel
commands and elements. This strategy allowed develop-
ment of DEDIT in a straightforward manner without the
necessity of retaining large blocks of information in the
7094 during editing.

Finally, it was decided that the card formats and deck
structures used in DEDIT should be compatible with
those used in the standard edit. Therefore, DEDIT
control cards are of the form:

Col. 7 16
•REPLACE NAME

and *M0DIFY NAME
where NAME is the name of the system record to be
processed. The octal patch cards are also identical to
those used in standard DCS editing with the exception of
an optional feature described below.

3.2.3 Programming of DEDIT
The implementation of the new editing facility was

carried out in two phases; the development of a new
HEY code and its interpretation in DCMUP, and the
editor itself which runs on the 7094.

The new HEY code has several functions.* Through
appropriate calling sequences it can be used in 7094
programs to:

1. Obtain the 7040 address of the first location of the
system name table in the 7040. Use of this com-
mand also sets a switch which is tested in DCMUP
at the end of every job and, when set, initiates
reloading the system name table from disk;

2. Transmit in either direction between the 7094 and
7040;

3. Read or write a selected track in the reserved area
of the disk.

The 7094 program is illustrated in the accompanying
flow chart (see Fig. 1). Note in block I of the figure
* The author wishes to acknowledge the work of Mr. James
Blanchard who carried out the 7040 HEY code programming.

that octal patch cards (indicated by "OCT" in columns
8-10 of a BCD card) are preprocessed and then treated
as if the information had been on a binary card. If the
loading address specified on such a card is 0 (zero) or
blank, and if it does not immediately follow a *REPLACE
or *MODIFY card, it will be chained into the previous
information, t

Block II includes routines to detect the presence of a
full track of information, which results in filling in a
necessary word count in the previous channel command
and setting up a new channel command with the
appropriate loading address.

The facilities indicated in Block III of the figure allow
the user to obtain intermediate output including input
card images, track images and indications of the stages
of processing as they occur. This has been a most
valuable aid during debugging and does not affect
execution of the program if not used. On the other
hand, it is expected that this facility will enable other
DCS installations to adopt DEDIT for their own use in
relatively short time in spite of different conventions for
track allocation, etc.

If the result of Block IV is *MODIFY or *REPLACE,
then the address of an unused cylinder is obtained for
preparation of a new system record.

The organization of this program also allows additional
control cards to be added easily in the future, if desired.

Debugging took place in three phases. DEDIT was
first written in the MAD language, and debugged using
temporary routines to simulate, on the 7094, subroutines
which would later use the new 7040 HEY code. When
the HEY code was implemented and the MAD program
was debugged, the assembly language program capable
of using the HEY was prepared and debugged by deleting
the four simulation routines, one at a time, from the MAD
program. Finally, using the MAD program as a flow
chart, a MAP program was written to implement DEDIT
in IBJOB for distribution. (FORTRAN IV implemen-
tation would have been impractical due to the necessity
for the logical manipulation of word fields.) It is felt
that this technique of debugging in a high level language
reduced the checkout time by a large factor.

3.2.4 An example of use of the editor

The following sequence effects the replacement of
IPL-V in MAMOS, and also a modification of the
MAMOS monitor. This is followed by two segments to
test these changes.

identification information
SJOB
SID
SEXECUTE IBJOB
SIBJOB

DEDIT deck
SDATA

t This optional feature is the only departure from standard DCS
editing input deck structure.

245

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/3/242/406217 by guest on 19 April 2024



System maintenance

Read 1 card

Set or
reset
switch

Print error
comment

'TEST' or 'NOTEST'

Read and
process
blocks until
terminal
command is
read / set
pointers

Initialize

Force
output
f

Print
system name
table

Read 1 card

Type of card

Fig. 1—Flowchart of DEDIT

Transform
into format
of binary
card

•REPLACE IPL-V
Binary and/or octal deck

•MODIFY MADMLI
Binary and/or octal patches

SEOF
SEXECUTE MAMOS

Test segment 1

SEOF
SEXECUTE MAMOS

Test segment 2
SEOF
SJOB (next job in input queue)

Unless octal patch cards with the optional feature of zero

246

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/3/242/406217 by guest on 19 April 2024



System maintenance

or blank location fields are used, the replacement and
modification control cards and the binary and/or octal
patch cards which follow may be used unchanged as
input to a standard DCS edit.

4. Extensions
The addition of TAPE to the control card repertoire

of DEDIT could be used to initiate the creation of a
self-loading system tape representing the system as
modified. However, as useful as this would probably be,
there would be the accompanying disadvantage of adding
the time-consuming process of optimum track allocation
to the editing process. At present, it is envisioned that
DEDIT will be used for debugging of new system
components, and the distributed editor will be used for
system tape preparation; i.e. for instituting a new version
of the operational system.

The ability to delete and insert system records is a
possible extension to the new editor, but not a necessary
one. Replacing a given record with a dummy segment
in order to simulate deletion is trivial in the context of
DEDIT. Insertion can be simulated by replacing a
record not needed in the checkout effort with the desired
new record and by making a corresponding change in the
control section which will load this record. The
necessity for these features would arise only if *TAPE
were implemented.

Although the 7094/40 DCS has some multi-program-
ming and multi-processing features, multi-console time
sharing creates new problems with respect to the approach
presented here. It is likely that two or more users will
require access to the same (re-entrant) translator on an

interleaved schedule. In this case, during use of this
new editor, each user will need his own copy of the
system name table, again to ensure integrity. Restora-
tion to normal processing, i.e. a universally used system
name table, would be included in the purging of any job
using this new type of editing facility. It is likely that
the programming effort required to implement such a
scheme would not be so great as to overshadow the
flexibility which this scheme affords. The ability to
develop and debug system software in the normal job
flow is a very positive addition to any system.

5. Results and conclusions
The approach described here was implemented in

under two months on the 7094/7040 DCS at the Com-
puter Center, Yale University. It requires less than
2 seconds per track written to complete an edit before
attempting to test the results. This time contrasts with
the minimum of 30 minutes typically required to edit a
new system, test it and then reload the current system
tape. In typical cases, a factor of 50 is realized in terms
of time saved.

As in the case of compilers, it appears that a set of
editors of differing capabilities and characteristics is
desirable in a software system. When optimum disk
usage is required as in the fully operational system, then
the time spent to achieve this efficiency through optimum
track allocation is generally well spent. However, for
short debugging and analysis runs, quick processing
more than makes up for comparatively inefficient use of
disk storage since the situation is in effect for a very short
period of time.

References
1. IBM CORPORATION. "General Information Manual, 1301 Disk Storage with 7631 File Control", Form D22-6576.
2. SMITH, E. C. "A Directly Coupled Multiprocessing System", IBM Systems Journal, September-December 1963.
3. ROSIN, R. F. "MAMOS Under IBSYS at Yale", Computer Center, Yale University, 1965.
4. University of Michigan Executive System for the 7090 Computer, University of Michigan Press, Ann Arbor, 1964.
5. IBM CORPORATION. "IBM 7090/7094 IBSYS Operating System, System Monitor (IBSYS)", Form C28-6248.

Correspondence
To the Editor,
The Computer Journal.
Sir,
I should like to comment on the points raised by Dr. Samet
in his letter "Progress ?" in the August issue of the Journal.
We can indeed be proud that so many of the techniques of
programming were originated on EDSAC 1 and Pegasus
machines, but the question is to what extent this lead has been
maintained. The significant thing about the use of relocat-
able binary in the EGDON system is not that a new technique
has been invented, but that it is being used in a British
computing system in a way that has been common in
American systems for many years. The reason for using
relocatable binary is not that it provides relative addressing,
but that it makes it possible to divide a large program into
subprograms (possibly written in different languages) that can
be compiled independently, with a consequent saving of

compiling time when a change is made to one sub-program.
There is no point in doing this on a small computer with small
programs, but on a large computer with large programs the
gains are substantial. It is a sad commentary on the develop-
ment of computing in British Universities that until recently
we have had no large computers, and consequently no
experience of really large programs and the techniques
required to deal with them. Now that we have at last got
some large machines we must take care that we do not allow
small-machine techniques and ways of thinking to persist.

Yours faithfully,

D.W. BARRON

The University Mathematical Laboratory,
Corn Exchange Street,
Cambridge.
5 August 1966

247

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/3/242/406217 by guest on 19 April 2024


