Note on ordering of grammar rules in syntax-analyzers

By J. Cohen and X. Nguyen-Dinh*

The ordering of grammar rules in the syntactical analysis of context-free languages (as utilized
in syntax-directed compilers) plays an important role in the parsing efficiency. No theoretical
treatment of the optimum ordering is currently available. This paper presents a practical approach
to this problem whereby reordering of rules is adjusted to optimize the analysis of input string

samples.

During the past few years considerable interest has been
given to the implementation of syntax-directed compilers.
Although the analysis algorithm itself represents a minor
part of the entire compilation process, it presents a great
interest from a practical point of view. This interest
stems from the fact that the efficiency of the compiler
depends considerably on the efficiency of the analyzer.
On the other hand the latter depends on the ordering of
syntactical rules: syntactical analysis of general context-
free languages involves ‘“trial-and-error”, and parsing
time is obviously reduced if the rules most likely to
succeed are the first ones to be tried.

Irons (1961) remarks that the problem of optimum
ordering of rules is non-trivial and suggests that it be
left ““for contemplation on rainy days”. As far as we
know no theoretical solution to this problem is currently
available. Our approach is a practical one and consists
in developing a program that keeps track of the number
of times a rule is successfully utilized. The reordering
is done in a subsequent phase so that the most frequently
used rules will be the first ones to be tried in the analysis
phase.

In this presentation we assume that the reader is
already familiar with some of the algorithms for the
analysis of context-free languages. A concise and clear
presentation on this subject is given by Floyd (1964),
who also gives an excellent bibliography.

The reordering program which we shall describe was
specifically developed in connection with the Kuno and
Oettinger (1962) analyzer; however, similar schemes
could be devised for other types of analyzers.

Syntactic ambiguities are common in natural languages;
Kuno and Oettinger were interested in their detection by
determining all parses associated with a given input
string. Programming languages are designed to be
unambiguous, but often only actual practice with a given
context-free language could “confirm” the inexistence of
ambiguity. Most analyzers utilized in current syntax-
directed compilers take for granted the inexistence of
ambiguity and search only for the first successful parse.
The Kuno-Oettinger algorithm can be easily modified
to search only for a first possible parse. In this case
ordering of syntactical rules becomes critical. The main
reasons for selecting this type of analyzer to investigate
the advantages of the reordering technique were:

(1) Optimum ordering is critical when only one parse
is required.

(2) This analyzer is closer to the selective top-to-
bottom classification of Griffiths and Petrick (1965)
and it would parse faster than the normal top-to-
bottom algorithms.

(3) The Kuno-Oettinger algorithm is relatively simple
mainly because it requires that grammar rules be
given in a special form. This makes the proposed
reordering scheme particularly easy to implement
and to describe.

The syntactical rules utilized by the Kuno—-Oettinger
analyzer are necessarily of the form

X——)dY,Yz...Y,,, (])
or

X—a.)]
X,Y,Y,,... Y, areelements of the auxiliary vocabu-

lary (metavariables) and a is an element of the terminal
vocabulary (basic symbols). It is convenient to express
the above rules in the following form:

X,a)—= Y\ Y,... Y, (1a)
and
(X,a)— A (2a)

where A is the null string.
The analysis algorithm utilizes push-down-stores
(PDS’s or stacks) and can be briefly described as follows:

(a) Consider the couple formed by the metavariable
X at the top of a PDS and the next basic symbol
a in the input string. Three cases may occur:

1. There exists only one rule (X, a) —» Y, Y,...Y,
in the grammar under consideration. In this
case X is replaced by Y,; Yy, . - Y2, ¥}
are pushed into the store, Y, becoming the top
element of this PDS. The process described in
(@) is then repeated. When the (X, a) rule is
of the type (2a) this operation is equivalent to
the elimination of X from the top of the store.
In both cases the pointer to the next basic
symbol in the input string is advanced one
position to the right.

* Institut de Mathématiques Appliquées, Université de Grenoble, Grenoble, France.

20z Uolel €1 U 3senb Ag 64:290%/052/€/6/2101e/|ulwod/woo"dno olwspese//:Sdpy Woly papeojumoq

Grammar rules

2. There are several rules (X, a). New PDS’s are
then created for every rule by recopying the
contents of the original one. Step (a) is
repeated for each newly created PDS.

3. There is no rule (X, @) and the above-described
manipulations with this PDS are abandoned.
The algorithm considers the next PDS that
might have been formed while in 2.

(b) The iteration described in (a) terminates success-
fully with one parse when all elements of the input
string have been considered and the current PDS
is empty. (If all parses are to be found an
additional terminating condition is that no other
PDS remains to be considered.)

Initialization consists in placing the metavariable
{program) in a PDS prior to following step (a). It
should be pointed out that the above description is only
pedagogical and at most two PDS’s are needed in actual
implementation of this algorithm. The detailed ALGOL
program describing the analyzer is given by Nguyen-
Dinh (1965).

Before proceeding to the description of the adopted
memory allocation scheme, let us make a few remarks
about the syntactical rules utilized in the Kuno—
Oettinger analyzer. Greibach (1965) has proved that
every context-free grammar is weakly equivalent to
another context-free grammar whose rules are of the
type (1) or (2). Greibach also indicates how the trans-
formation into these rules could be accomplished.
Nguyen-Dinh (1965) gives an ALGOL program that per-
forms this transformation, and prepares the data needed
by the analyzer and the subsequent reordering program.

POINTER [X, a] is a two-dimensional array storing
the pointers p} ,. The entries X and @ correspond to
the elements of a rule written as (la) or (2a). The
PXx.a’s are actually indices to a one-dimensional array
TABLE where the right-hand-part of the rules are stored.
The following information is stored in TABLE:

TABLE [ply,]

TABLE [ply, + 1]
TABLE [py,, + 2]
TABLE [Py, + 3]
TABLE [p)y, + 4]

contains pit!
contains m'
contains Xi |
contains Y
contains Y}

References

TABLE [p%,+ m' + 2] contains T

The superscript i indicates the ith rule of the type (l1a)
or (2a) for a given couple (X, a). X%, represents the
sum box indicating the frequency of use for the ith
(X, a) rule. When no syntactic rule exists for a couple
(X, @), POINTER [X, a] contains a special symbol whose
presence can be tested by the analyzer. Similarly when
P} is a special symbol, the information that follows it
in TABLE represents the last of the (X, a) rules. An
mi equal to zero indicates that the corresponding rule is
of the type (2a).

The operation modes of the program may now be
described. First in an analysis mode the parsing of
input string samples is performed using an arbitrary
configuration of the pk,’s. After each successful parse
is completed a second mode takes care of book-
keeping the X%.’s. Finally, in a third mode, the
program examines these sum boxes and reorders the
Pko’s so that the one corresponding to max Zj, is
given by POINTER [X, a] and the others, in decreasing
order of their X% .’s, are specified by the chain-links
stored in TABLE.

The switching between the above-described modes of
operation is controlled by the user. He might, for
example, decide that after the most typical string samples
have been analyzed and rules reordered, only mode one
would be operational.

The above reordering scheme has been programmed
in ALGOL and tested at the Computing Centre of the
Université de Grenoble. Detailed description of
programs and discussions of the results are presented by
Nguyen-Dinh (1965).

A part of the ALGOL syntax comprising arithmetic
and Boolean expressions was selected to test the
advantages of reordering. For some sample strings the
analysis performed after reordering took 1/2 to 1/20 of
the time spent in the previous analyses. These figures
are mentioned only to give an idea of possible gains in
parsing speed. Actual gains are highly dependent on
the grammar and on the structural similarity between
sample strings utilized in the reordering and those to be
analyzed after it. It was also observed that for certain
grammars, several of the computed Z%,’s had the same
value, thus indicating that for these special cases a second
level of optimization would be required to increase
further the parsing efficiency.

Frovp, R. W. (1964). “The Syntax of Programming Languages—A Survey”, IEEE Transactions on Electronic Computers,

Vol. EC-13, p. 346.

Irons, E. T. (1961). Maintenance Manual for Psyco, Part One, Princeton University.
Kuno, S., and OETTINGER, A. G. (1962). “Multiple Path Syntactic Analyzer”, Proc. IFIP Congress, Amsterdam: North Holland,

p. 306.

GREIBACH, S. (1965). “A New Normal-Form Theorem for Context-Free Phrase Structure Grammar”, J. Assoc. Comp. Mach.,

Vol. 12, p. 42.

NGUYEN-DINH, X. (1965). “Méthodes d’analyse descendante pour les langages ‘Context-Free’ ”’, Thése de Troisiéme Cycle,

Université de Grenoble.

Grirrrmas, T. V., and PETRICK, S. R. (1965). “On the Relative Efficiencies of Context-Free Grammar Recognizers”, Comm.

Assoc. Comp. Mach., Vol. 8, p. 289.

20z Uolel €1 U 3senb Ag 64:290%/052/€/6/2101e/|ulwod/woo"dno olwspese//:Sdpy Woly papeojumoq

