Grader programs
By R. E. Berry*

This paper examines the possibility of using automatic grading programs for checking some of
the practical work of students on a Numerical Analysis course. Two existing programs for
checking root-finding techniques were tested to gain experience in using grader programs. A
program to check solutions to a system of » first order differential equations was written.

1. Introduction

Early in the sixties workers in several American Uni-
versity Computing Laboratories felt that the increasing
number of students attending programming courses
meant that too much of the Laboratory staffs’ time
would have to be spent in supervising and marking
students’ practical work. Since marking is inevitably
repetitive it seemed a practical proposition to write a
“grader program” which would be able to check other
programs. The students’ work is written as an ALGOL
block and is inserted into the grader program which
merely presents the block with different parameter
values and checks that the students’ algorithm obtains
the required solutions. Grader programs have usually
been used to check work arising from Numerical Analysis
courses though there is no reason why they should not
find application in other fields.

The suggestion that programs of this type might prove
useful seems first to have been made by Hollingsworth
(1960). Subsequent work by Naur (1964), and by
Forsythe and Wirth (1965), has shown that grader
programs can be most useful, while the more recent
work of Perlis and Braden (1965) amply illustrates the
wide variety of problems whose solutions may be
checked automatically.

The term Grader Program is an American one, and
while appropriate is possibly misleading. It does not
imply that a mark or grade is given by the program to
the work submitted. Some programs do give grades
although there is considerable complication if any one
of several methods of solution might be acceptable. It
seems usually sufficient for the program to provide
enough information for a mark to be quickly assigned
by the students’ supervisor.

In a preliminary study the programs given by Naur,
and Forsythe and Wirth were compared. Since these
considered the same problem (finding the root of a given
function to a given accuracy in a prescribed interval)
they provide a good illustration of the methods available
for constructing a grader program.

Naur’s method requires that the algorithm pro-
grammed by the student is included in the grader
program as a labelled block, accessed by means of a
switch. The grader then assigns values to variables
which are global to the block, and in this way presents
different problems to the student algorithm. Upon
completion of the problem a jump is made from the

student block to a given label within the grader program.
The solution obtained is then examined and printed
out with comments where necessary. Further problems
are then presented until the problem list is exhausted,
when the grader presents the same problems to the
remaining student algorithms.

The alternative, which seems the simpler approach, is
the one adopted by Forsythe and Wirth. They ask the
student to write a procedure. The only restriction is
that the parameters must be in a specific order. To
make the work suitable for inclusion in the grader it is
necessary to enclose the procedure declaration in a
block whose only action is to call the procedure Test,
which forms the main part of the grader. Test has two
parameters one of which is the identifier of the students’
procedure. Each procedure is tested by supplying it
with several sets of parameters and checking the results
obtained. The program terminates when all students’
procedures have been tested.

These programs proved most interesting, and as a
result it was decided to construct a more ambitious
grader which would examine procedures for solving »
simultaneous first order differential equations.

2, The ordinary differential equation grader program

This grader program is designed to test procedures
for solving the initial value problem for sets of ordinary
differential equations. This is achieved by submitting
to the procedure under test various problems each of
which is determined by a problem number. A check is
made on the accuracy of the procedure by comparing
the results obtained with the analytic results. Various
other tests are performed, and details of these will be
given later.

The following demand would be made of the student:

Write an ALGOL procedure to solve the n simul-
taneous first order equations of the form

dy;
dx

The procedure will have the following formal parameters
in the order given.

=ﬁ(an’1,y2,---,yn) i=1,2,...,l’l

n the number of equations;
xa the initial value of x;
xb the final value of x;

* Computing Laboratory, University of Newcastle upon Tyne, 1-3 Kensington Terrace, Newcastle upon Tyne, 2.

20z UoJel €1 U 3senb Ag 95290%/252/€/6/210me/|ulwod/woo"dno olwspeoe//:Sdiy Woly papeojumoq

Grader programs

»y an array which will upon entry contain the initial
values of the dependent variable, and upon exit
must contain the solution of the equations.

fn a procedure having three parameters 7, g, s.
The independent variable is ¢, array g contains
values of the dependent variable. Upon exit
from the call fn (¢, g, s) the element s [{] of the
array s will contain the right-hand side of the
ith equation evaluated at the points ¢, g[i].

the accuracy required of the solution. (For sim-
plicity this was also used as the accuracy required
at each stage of the calculation. The writer is
grateful to the referee for his suggestion that
acc X hf(xb — xa) might be a better value to use
at each stage, though this might demand a very
high accuracy for the last step of an integration
by a method using automatic interval changing.)

acc

An interval of integration A will be global to the
procedure. It is not necessary that the procedures use
this value of h. Procedures written to determine their
own interval of integration should assign the value used
for integration to identifier A. The identifiers corre-
sponding to xb, acc may not be called by value. On
exit from the procedure the array y should contain the
required solution. The procedure must contain no out-
put statements, and no jump must be made to any labels
outside the procedure. An effort should be made to
ensure that no special situations may lead to an infinite
loop, division by zero, or any other failure which results
in the failure of the whole program. The number of
entries to procedure fn should be kept as low as possible.
A begin should precede the procedure declaration, and
the declaration should be followed by the call Zest
(Solver, [JONES)), where Solver is the name of the
procedure written by student Jones. A final end would
then make the work suitable for submission to the
grader.

As few restrictions as possible are imposed on the
student, and the only one which might need explanation
concerns identifiers xb, acc. On exit from the student’s
procedure a check is made to ensure that the values of
xb, acc have not been changed by the student’s procedure.
If the procedure calls xb, acc by value, any change of
these values within the procedure could not be detected.

The program consists of three basic procedures, Test,
Ex, fup. Procedure fnp is local to Ex which is local to
Test. There are three parameters ¢, g, and s in a call of
Jnp. fup is the actual parameter which is substituted for
the students formal parameter fn. Its action depends
upon an integer which is the problem number, and
different problems are specified by altering this integer.

The student is attempting to solve a system of first
order equations, a typical one of which might be
ylil’ = f(x, yli]). In a call of fup(t, g, s) ¢t has the value
of x the independent variable, array g contains the
current values of the elements y[i], and upon exit array s
will contain the right-hand side of the equations
evaluated at these points. Upon each entry the count

253

of the number of calls of fnp is increased by one, and
this count is examined to ensure that it does not exceed
the limit set on the number of calls. If this limit is
reached a warning is printed out to this effect and the
value of the independent variable at the last entry to fhnp
is printed out. A warning is also printed out if the inde-
pendent variable is outside the range of integration. In
either eventuality the program proceeds to the next
problem. Normally the limit on calls of fip will not be
reached, and the program will jump to a switch with the
problem number as index, and thus evaluate the appro-
priate right-hand sides.

Procedure Ex has eight parameters:

eqns the number of equations being solved; it can
also be the order of the equation being solved.

inx the initial value of x.

outx the final value of x.

reqacc the truncation error allowed.

interval the initial value of the interval of integration.

solution the analytic solution for comparison pur-
poses.

limit the upper limit on the number of calls of fip.

exno the problem number.

Four of the above parameters correspond to four of
the parameters which the student’s procedure must use.
The first action of Ex is to assign to the parameters used
in the call of Solver (the student’s procedure) the values
of the parameters of the current call of Ex. In this way
each call of Ex presents a new problem to the student’s
procedure. By using a switch list with the problem
number as index the initial values of y associated with
a particular problem are set up. Copies of the initial
values in the first and last elements of array y are now
stored elsewhere, so that by comparison at a later stage
it may be established that the solution has or has not
been assigned to array y. Immediately before the
student’s procedure Solver is called, entry is made to
the real procedure rtime which stores the time. There
are two means of exit from Solver; one is the normal
exit after which the examiner program continues, and
the other is via fup when the limit on function calls is
reached. In either eventuality a further entry is made to
rtime which results in the time elapsed since the initial
entry being recorded. By this means the time spent by
Solver in obtaining a solution is known.

The program continues by making a series of checks.
Both the final value of x and the required accuracy are
tested in case they have been changed, and array y is
examined to ensure that the solution has been stored
there. Should any of these tests fail then the program
prints an appropriate warning and continues by con-
sidering the next student’s work. If the program runs
normally then at this stage on the first entry to Ex a
series of column headings is printed. Upon each suc-
ceeding call of Ex appropriate entries are made in these
columns. The output of results marks the end of Ex.

Procedure Test has two parameters: the student’s
procedure, and a text string which is the student’s name,

20z UoJel €1 U 3senb Ag 95290%/252/€/6/210me/|ulwod/woo"dno olwspeoe//:Sdiy Woly papeojumoq

Grader programs

It contains two procedures to simplify output, and it
also contains the procedures rtime, and Ex. When
called, Test works through all the calls of Ex, i.e. the
list of problems. Upon completion of the list of problems
the total number of calls of procedure fup is printed.
The program continues by considering the next student’s
work.

Nine problems are included in the program, though
provision is made in the switch declarations for the
inclusion of twenty. While it can never be claimed that
a procedure which successfully completes a set of problems
can thus produce the correct solution to every problem,
it is felt that the examples included give a reasonable
indication of the performance of a procedure. One of
the practical drawbacks in presenting a difficult set of
problems for test purposes is that the time taken by the
program to examine several procedures increases con-
siderably. Since large amounts of machine time are
not readily available it is prudent to arrange a set of
examples whose execution can be accomplished in
reasonable time by most procedures.

At the time when this work was undertaken students
were not available to produce testing material. It was
thus necessary for the writer to prepare several pro-
cedures himself, and also to adapt procedures constructed
by other members of the laboratory. This had the effect
of ensuring that the solution to the question posed was
a reasonable one to attempt, and of providing a set of
procedures with which students’ work could be com-
pared in future. The unfortunate result of the writer
having to prepare all the material himself was that no
ambiguities in the problem set would be brought to
light. He would also be unlikely to make the mistakes
which he had designed the grader program to detect.

The methods of Adams-Bashforth, Milne-Simpson,
Runge-Kutta, and Kutta—Merson were programmed,
and an interesting comparison of methods was made
possible by the grader program.

As a by-product it became clear that the grader pro-
gram was a very useful way of ‘““debugging” procedures,
and of testing their actions in a variety of circumstances.

It only remains to give the grader a thorough testing
by submitting students’ work for grading; it is hoped to
do this shortly in an undergraduate class. In addition
to the lecturers’ comments, the students views of the
output are of interest. While the grader is primarily
concerned with providing supervisors with information
concerning students’ work, the program output should
also be of some help to the student if this is necessary.
The programs of Naur, and Forsythe and Wirth are
deficient in this respect. Both programs print out a
message to the effect that the student’s program has
exceeded the limit on the function calls, but neither
prints out the value of the argument at termination, the
expected solution, nor the student’s solution. It is
desirable to print sufficient information to help the
student in case of failure, and it is hoped that
the differential equation grader is satisfactory in this
respect.

254

3. Grading

One of the difficulties which was very well illustrated
during the work was that of comparing different methods
of solution, so that a fair grade may be given. The
case in point was the comparison of multi-step with one-
step methods. The combination of the Runge-Kutta
starting mechanism and multi-step methods worked
satisfactorily for most problems. There was, however,
one situation in which it was quite unsatisfactory. If
the last step which the multi-step procedure is required
to take is less than the interval being used for integration,
then the procedure cannot produce an accurate answer.
If an interpolation procedure was entered in this even-
tuality, then this is liable to introduce error, and thus
invalidate any comparison. A much better solution
would be to have a starting mechanism which con-
sidered the whole range of integration and divided it by
appropriate factors until a satisfactory interval of inte-
gration was obtained. This would produce a multi-
step procedure which would cover the situation described.
It would also produce a multi-step procedure which did
not start with the same interval as the remainder of the
procedures being tested. The essence of a grader pro-
gram is to present to each procedure or labelled block
a similar set of conditions and to measure the reaction
of the procedures to the given situation. Given this,
then a procedure which disregards one of the initial
conditions invalidates any comparison with other pro-
cedures being tested. This accent on comparison must
be made since a grading mechanism such as the one
used by Forsythe and Wirth is in fact a strict comparison
of procedures.

The foregoing points are made to emphasize the fact
that comparison of work is not by any means straight-
forward. Thus in trying to present a problem to which
different methods of solution are available, the possi-
bility of grading successfully the work presented is
remote. Grading is only realistic when the methods
of solution being tested are the same. The Runge-
Kutta method used half as many function calls again as
the Adams-Bashforth, and was marginally slower, while
the accuracy was comparable. The problem is to give
a fair grade to each. The fairest conclusion to be made
from this is that while a grading system could prove
satisfactory for marking variations of the same method,
a program without a grading mechanism is a more
realistic prospect for testing different methods of solution.
The alternative is to develop a ‘‘weighted grading system”,
but it is doubtful whether this would be worthwhile.

4. Discussion

Grader programs would be extremely simple to use in
a software system which did not demand re-compilation
of the whole program when further material was added.
Students’ work might then be added simply. However,
in many systems, including the one used, it is necessary
to splice procedures for testing into the existing paper
tape program and recompile the resulting program

20z UoJel €1 U 3senb Ag 95290%/252/€/6/210me/|ulwod/woo"dno olwspeoe//:Sdiy Woly papeojumoq

Grader programs

Punched cards would eliminate the splicing but not
necessarily re-compilation. A whole series of procedures
might be assembled on paper tape, of which just one is
required to be run for test purposes.

To cater for this kind of eventuality the following
modification is suggested. The procedures could be
made into labelled blocks such as appear in Naur’s
program, but instead of having the switch index derived
from a for statement (so that the program tests all work
submitted), link the switch index with a read statement.
In this way the procedures to be tested could be specified
on a data tape. A similar system could be used for the
list of problems, so that only specified problems need be
included in any test. This would be beneficial in two
ways. In the first instance a student wishing to correct
his program which might have failed on one problem
only, could state that it was only necessary to check
the procedure for this problem. Secondly it would
enable the person in charge to present different problems
on different runs and thus minimize the chance of the
criticism that the students’ work would become problem
oriented. An alternative to the latter suggestion would
be to make the parameters in the procedure call Ex
variable, so that they may be read in. Changing the
range of integration for instance would give one a
variable problem. All this, however, is departing further
and further from the concept of the grader or examiner
as a fixed program, though this might prove a most
worthwhile line of development.

These programs are limited in the respect that each
can only test one particular problem, though this dis-
advantage can be offset by preparing suites of programs
to cover many different problems. It would not be
difficult to select a set of problems which were appro-
priate to several courses and thus save duplication of
work. Apart from this basic set of problems, Master
Programs could be written to cover a wide variety of
problems. In this respect the section by Perlis and
Braden concerned with problems should be consulted
since it contains a large selection of problems which
might prove appropriate. Perhaps the best example of
the situation in which a grader program might prove
useful is in testing sorting procedures. The approach
which suggests itself is to declare procedures COM-
PARE, and CHANGE and others appropriate to mag-
netic tape, disc, and card handling, global to the
sorting routines. These could be called as required, a
count could be kept of the number of calls, and in this
way an estimate might be obtained of the relative effi-
ciencies of the procedures. By presenting a sample data
tape to the sorting procedures the one proving most
efficient with this data may be selected. This could in
practice prove most useful. It also shows that grader
programs have a wider range of application than might
initially be apparent.

As has been mentioned before, American workers
are both active and enthusiastic in this field. The writer
feels, however, that enthusiasm must be tempered by
realism. The demand for automatic grading programs

or examiner programs is not liable to be considerable
in this country, simply because our laboratories and
their associated courses are smaller. There is one thing
at least which commends their use. They provide an
incentive to work. Naur, for instance, claims that
“many of the students were positively excited about the
problem™. The writer found that interest rather than
excitement was aroused, and those people who did
prepare work for submission found the challenge of
writing the best procedure an incentive to work. If this
kind of interest can be aroused in a class of students it
will be to their own benefit. It is well known that a
good teacher is one who can generate and maintain the
interest of a class in the work it is doing. If a grader
program provides a means of doing this, is this not
some recommendation for its use? In the writer’s
opinion it is.

It is regretted that considerations of space prevent
the inclusion of the program with this paper. Interested
readers may obtain the full printout of the ALGOL
program by application to the author.

A sample of the output produced by the program is
given below. The output headings are as follows:

EX the problem number given as the last
parameter in the call of procedure Ex.

INTERVAL the length of the last step taken by the
procedure.

F CALLS the number of entries made to procedure

Srp.
SOLUTION the solution obtained by the procedure.

ERROR the difference between the analytic solution
(given as the sixth parameter in the call
of EX) and the solution obtained by the
procedure. When the analytic solution is
unknown the dummy ,,+20 is inserted
instead of the solution in the call of Ex.
A row of dots is then printed in the error
column.

TIME the time in seconds taken by a procedure

to complete a problem.

D.E. PROCEDURE TEST

RUNGE-KUTTA MODB

EX INTERVAL F CALLS SOLUTION ERROR TIME

1 0-100000 48 0-600420 0-000004 0 4
2 0-100000 92 —2-000001 0-000001 O 6
3 0-050000 148 0-693175 0-000027 0 15
4 0-050000 196 0-444762 0-000317 0 14
5 0-392699 40 0-999606 0-000394 0 3
6 0-025000 352 0-203003 0 27
7 0-200000 28 0-000000 0-000000 O 2
8 0-050000 172 221-264956 0-000256 0 10
9 0-025000 344 2000001 0-000001 O 21

TOTAL CALLS 1420

20z UoJel €1 U 3senb Ag 95290%/252/€/6/210me/|ulwod/woo"dno olwspeoe//:Sdiy Woly papeojumoq

ADAMS BASHFORTH 3

m
<

INTERVAL

0-100000
0-100000
0-050000
0-050000
0-392699
0-025000
0-200000
0-050000
0-025000

OOV B W~

F CALLS

44
57
113
142
44
206
27
122
197

TOTAL CALLS 952

MILSIM

EX INTERVAL

0-100000
0-100000
0-050000
0-050000
0-392699
0-025000
0-200000
0-050000
0-025000

ORI ANWNBWN -

F CALLS

36
40
85
104
42
350
25
85
200

TOTAL CALLS 967

KUTTA-MERSON

EX INTERVAL

F CALLS

30
55
167
186
28
106
15
222
209

TOTAL CALLS 1018

1 0-200000
2 0-200000
3 0-100000
4 0-200000
5 0-392699
6 0-200000
7 0-800000
8 0-025000
9 0-050000
References

ForsyTHE, G. E., and WIRTH, N, (1965).
HOLLINGSWORTH, J. (1960).
NAUR, P. (1964).

SOLUTION
0-600430
—2-000000
0-693393
0-445388
1-000012
0-203003
—0-000000
221-283361
2-000000

SOLUTION
0-600426
—2-000000
0-693212
0-444776
0-999939
13:911633
—0-000000
221-269402
2-005810

SOLUTION

0-600418
—2-000000
0-693154
0-444456
0-999945
0-203246
0-000000
221-264720
1-999999

“Automatic graders for programming classes”, Comm. of the Assoc. Comp. Mach., Vol. 3, p. 528.
“Automatic grading of students Algol programming”, B.1.T., Vol. 4, p. 177.

PerLIS, A. J., BRADEN, R. T. (1965).
Concepts Project, Carnegie Institute of Technology, p. 81.

ERROR
0-000006
0-000000
0-000246
0-000944
0-000012
0-000000
0-018661
0-000000

ERROR
0-000002
0-000000
0-000065
0-000331
0-000061
0-000000
0-004702
0-005810

ERROR

0-000006
0-000000
0000006
0-000011
0-000055
0-000000
0-000020
0-000001

Grader programs
SCRATON

TIME

0 16
15
3
24

COO0OOO

17

3

[oNeNoNeNoRoNo NNl
N ok

[\
O W= Wb bhoin

TIME

19
16

15
14

(=Nl oNeNe NN NNl
N

m
]

VXTI WNDB W —

INTERVAL

0-100000
0- 050000
0-200000
0-200000
0-392699
0-400000
0-800000
0-050000
0-050000
TOTAL CALLS

F CALLS
50
209
127
201
42
174
15
113
297
1228

SOLUTION
0-600425
—2-000000
0-693154
0-444445
1-000060
0-202739
0-000000
221-264633
1-999996

K-M ALTERNATIVE v =0-7

EX

OO0~ ANWNPAWN -

INTERVAL
0-018336
0-162549
0-036543
0-118173
0-372465
0-007261
0-800000
0-009049
0-034635

TOTAL CALLS

Acknowledgement

This paper forms the greater part of a dissertation
prepared as part of an M.Sc. course. Financial support
for the course was obtained from the Science Research
Council. My supervisor throughout the work, Mr. L. B.
Wilson, deserves special thanks, and I am also grateful
to other members of the Laboratory staff for their help

F CALLS
35
40
157
166
28
100
10

220
164
920

SOLUTION
0-600419
—1-999999
0-693154
0-444459
0-999944
0-202837
0-000000
221-264705
1-999997

and encouragement in this work.

ERROR

0-000001
0-000000
0-000006
0-000001
0-000060
0-000000
0-000067
0-000004

ERROR

0-000005
0-000001
0-000006
0-000014
0-000056
0-000000
0-000005
0-000003

TIME

021
017
20

18

COOoOOC
—

22

TIME

18
15

9

COOCOOCOOO0O
N

10

“Automatic Grading Programs’’, Technical Report: CS17, Stanford University.

256

An introductory course in computer programming, Monograph No. 7—Discrete System

20z UoJel €1 U 3senb Ag 95290%/252/€/6/210me/|ulwod/woo"dno olwspeoe//:Sdiy Woly papeojumoq

