
A compact storage scheme for the solution of symmetric
linear simultaneous equations

By Alan Jennings*

A method is presented for the computer solution of symmetric linear simultaneous equations which
takes advantage of the presence of zero elements away from the leading diagonal but which is
more flexible than diagonal band storage. The equations are solved by a form of compact
elimination.

A routine based on the method has been programmed in Atlas Autocode and used in some
analyses of building frameworks. It is found to be economical both in use of store and computing
time.

In the solution of many types of problem, linear simul-
taneous equations arise which are both symmetric and
sparce. In particular, network and field problems can
give rise to equations of this sort.

Several alternative methods of storage which make use
of low densities of non-zero left-hand side coefficients
have been used; they can be broadly classified into
diagonal band, submatrix and sparse matrix storage.
The most commonly used methods for the analysis of
large structural systems are submatrix storage schemes,
which can either involve large submatrices in a pre-
determined pattern, for instance tridiagonal (Wilson,
1959), or have smaller submatrices in a pattern con-
trolled dynamically by means of layout parameters
(Livesley, 1960). The use of large submatrices may
result in a large number of zero elements being stored
within the submatrices and a restriction on the equations
to the predetermined layout, whereas the more general
approach with smaller submatrices requires complex
programming.

Submatrix methods are useful where magnetic tapes
are needed as a backing store; however, with the advent
of computers with large fast-access stores, the need to
subdivide matrices for the purpose of storage transfer is
not significant for a large range of problems. If sub-
matrix methods are not used, then it is noted that
diagonal band storage is very simple to program for
direct solution, but the restriction imposed by having a
constant bandwidth could in some cases be very
inconvenient.

If the equations are solved by iterative methods then
the basic operation is one of multiplication. It is fairly
easy to adapt this to any method of storage including
forms of sparse matrix storage (Khabaza, 1963). Where
comparisons have been made between direct and
iterative methods for banded matrices (Wilson, 1959;
Clough, Wilson and King, 1963) it appears that iterative
methods will only tend to be more efficient when the
bandwidth is large and the number of right-hand sides
small. However, the number of iterations required for
reasonable accuracy is dependent on the method of
iteration chosen, the order of variables, the nature of
the initial trial vector and the convergence characteristics
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of the problem, so that any comparison between direct
and iterative methods is always open to revision under
different circumstances. An increase in the efficiency of
the programming technique used for either method is
also a factor which would affect the comparison.

The method adopted in this paper is a direct solution
method using a non-standard form of storage for the
matrix of left-hand side coefficients. The method is
almost as versatile as a sparce matrix storage scheme in
dealing with arbitrary patterns of non-zero elements,
while at the same time retaining most of the simplicity
inherent in the method of direct solution when using a
diagonal band storage scheme.

Matrix formulation of equations
A set of symmetric linear simultaneous equations may

be represented in matrix notation by

AX = (1)

where A is an n X n symmetric array of L.H.S. coefficients
and each column of the n x m matrix B represents a set
of R.H.S. coefficients. The variables which relate to
each set of R.H.S.'s are represented by columns in the
n X m matrix X. When considered in a matrix context
the L.H.S. and R.H.S. coefficients of the equations
become elements of the matrices A and B respectively.

Methods of direct solution perform linear operations
on the rows of the matrices A and B so that B is trans-
formed into X (which normally has no zero elements).
In the method to be presented the storage for matrix B
is a conventional two-dimensional array, but the storage
for A is of non-standard type.

The method has been applied to the solution of
positive definite systems of equations in which row and
column interchange facilities are not required for direct
solution.

Method of storage
The method adopted for matrix A is to store all the

elements below the leading diagonal in sequence by rows,
but with all elements preceding the first non-zero element
in each row left out.
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Fig. 1 Fig. 2
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would be stored in the computer in what will be called
the main sequence as follows:

1-5 0 2 1-2 - 1 1 0 2-2 5 1 10 6 2 6 - 1 2 0 0 6 1 .

In addition an address sequence is used to locate the
positions of the leading diagonal elements within the
main sequence. For the coefficients shown the address
sequence would be

1 13.

It will be noted that, when solved by elimination and
backsubstitution without row or column interchange, all
the build up of non-zero elements below the leading
diagonal will occur within the elements stored in the
main sequence.

The compact elimination method of solution
Fig. 1 shows diagrammatically the elements stored for

a particular elimination. Consider first the standard
Gaussian elimination without row or column inter-
change. At some stage the coefficients of column PR
will be eliminated by using equation PQ. In order to
discover which rows are affected the address sequence
for the whole of the latter part of the matrix will have to
be inspected and the appropriate rows operated on.
However in the compact elimination method the elimina-
tion of one row (say DE of Fig. 2) is performed by
referring only to the elements within the square DEFG.
Thus the compact elimination method is not only more
straightforward to program but also involves less
jumping about within the main sequence store.

The reduction process

Consider the reduction of a set of four simultaneous
equations with two right-hand sides. Denote L.H.S.
coeffs by a and R.H.S. coeffs by b. After the first
two equations have been reduced so that their leading
diagonal coefficients are unity the equations appear as
follows:

The

and

and

1

a 31
fl41

third

then

af2*
1
032

o42

0*3*

O2*3*

O33

O43

I equation is then

0*1 =
0*2 =
0*3 =
o*4 =
b*i =

bf2 =
putting

03*4* =

b* 1 =
u.**
032 =

= a3l

-• ai2 — a*i

-- a33 — a*i
-- a34 — a*i
-- b3l — a3i

-- b32 — a*x

= 0*4/0*3 ]

= *31/O*3

= ^32/0^3 J

0*4

O2*4*

O34

O44

reduced by n

0*2*
- o*2fl*3*

- o*2fl24*

- o*2^V
- 0*262*2*

* 2 * 2 *
b3l

(2)

(3)

The modified coefficients are stored in a transposed form
in the storage locations vacated by the eliminated
coefficients, which means that a** cannot be stored until
the reduction of the fourth equation is partly completed.
This difficulty is overcome by making use of symmetry
so that

a** = 0*3/0*3 (4)

this element being formed on the reduction of the fourth
equation. On the reduction of the third equation the
modified L.H.S. coefficients evaluated are those of the
third column, i.e.

and
0*3* = a*yla*i

0*3* = 0*2/0*2
(5)
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Fig. 4

As the factors 1/af,, ]/aJ2, etc., will be needed after
the reduction has taken place on their respective rows
then they are entered into the storage locations vacated
by on, a22, etc.

This process can be generalized and applied to the
case where the storage is of the compact form already
described. The sequence of arithmetical operations can
be summarized by the flow diagram shown in Fig. 3.
The column number of the first element in row / has
been designated r,, and r is the greatest of r, and r} where
r} is the column number of the first element in row j .

A set of temporary stores are used which are designated
c. The maximum number of these stores required equals
the largest number of elements stored for any row of
matrix A. Fig. 4 illustrates the sequence of events

SET TOTl FROM
REDUCTION

SET k TO ti k =

SUBTRACT 0.1 b- FROM

b ^ FOR VALUES OF

<l FROM i TO Tfi

k <

ADD iTO k

SUBTRACT
1 FROM I

/ \

• < •

n

J

BACKSUBSTITUTION
FINISHED

Fig. 5

contained within one cycle of the inner loop of the flow
diagram, which has the effect of modifying one element
of the A matrix and performing parallel operations on
the B matrix. A possible pattern of stored elements is
shown by dots, the elements used are enclosed by boxes
and those modified are enclosed by heavier boxes.

Backsubstitution
Having reduced the L.H.S. to an upper triangular

array of coefficients with unit terms on the leading
diagonal, the process of backsubstitution eliminates all
the elements above the leading diagonal.

Using the notation of equations 2 and 3 then element
afj* is eliminated by subtracting a**b** from b** for
all values of q from / to m.

The elements a** are most easily eliminated by
columns. Because afj* is stored in the location vacated
by Qji then the elimination will proceed by rows in the
main sequence store. The flow diagram associated with
backsubstitution is shown in Fig. 5.

Comparison with other methods of solution
The method presented enables sparse symmetric linear

simultaneous equations to be solved by elimination using
less storage space than with diagonal band and sub-
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1 ,

^ ^ M NON-ZERO ELEMENTS
l ^ H FORMING DURING
E S S ^ ^ ^ REDUCTION -7

Table 1

Fig. 6

matrix methods. Equations of the form shown in
Fig. 6 (where n = 40) lend themselves easily to diagonal
band storage. However, even in this case the compact
storage system entails a saving in storage space of over
30% as shown in Table 1, and a saving in total number
of arithmetical operations of over 30% as shown in
Table 2. Also shown in Table 2 is a comparison of
machine times for various Atlas Autocode programs
when used to solve a set of equations whose form is
shown in Fig. 6. Only the compact storage method
program made use of symmetry, the Gaussian elimination
programs were written without row and column inter-
change and one program had a facility for missing out
a row of operations if the element to be eliminated was
already zero. The sparse matrix program which uses
a direct method of solution, was found to give optimum
computer time when the variables were rearranged so
that the A matrix appeared in the form shown in Fig. 7.

Whereas it is advantageous when using the compact
storage scheme that the equations be so arranged that
the average bandwidth is small, some elements away
from the leading diagonal can be accommodated without
a large increase in storage requirement or computing
time. It is not necessary or beneficial to introduce extra
variables in order to draw all the elements inside a fixed
bandwidth as advocated for the submatrix method of
Livesley (1960). It is possible in certain types of struc-
tural problems to obtain a set of simultaneous equations
whose non-zero L.H.S. coefficients lie within the shaded
area in Fig. 8. This arises when a few only of the
variables have an influence on the whole of the structure,
the rest having only a local influence. The compact
storage system is extremely suitable in such cases.

Formation of equations
Because it is not possible to allocate the storage space

to the individual elements until the position of the first
non-zero elements in each row is known, the construction
of the equations could give rise to difficulty under certain
circumstances.

Comparison of storage requirements for matrix shown in
Fig. 6

STORAGE TYPE

Total matrix
Diagonal band (symmetric) storage
Tridiagonal submatrix (symmetric)

storage
Compact storage (including c store of

15)

REQUIREMENT

1,600
600
700

409

Table 2

Comparison of arithmetical operations and computer time
for the solution of equations of the form shown in Fig. 6

METHOD

Gaussian elimination with-
out bypass

Gaussian elimination with
zero bypass

Diagonal band (symmetric)
Sparse matrix (regular joint

sequence)
Sparse matrix (improved

joint sequence)
Compact storage (symmetric)

NUMBER OF
MULTIPLICATIONS

AND DIVISIONS

21,300

—

4,630
4,000

approx.
2,000

approx.
3,169

COMPUTER
TIME
SECS.

1-8

0-68

2-02

1-04

0-37

Fig. 7

If the equations are to be constructed by hand and
read into the computer as data or if they can easily be
produced row at a time then no difficulty arises. How-
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Fig. 8

ever, if the elements are to be entered in a more random
fashion then it will be first necessary, by some means,
to determine the positions of the first non-zero elements
of all the rows before the matrix can be constructed.

Conclusion
A method of computer storage and method of solution

has been developed for symmetric linear simultaneous
equations which have zero elements away from the
leading diagonal in the matrix of L.H.S. coefficients.
The method is versatile and economical as regards use
of storage space and computer time for solution, while
at the same time not being unduly complex.
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Book Review

Approximation of Functions, edited by H. Garabedian, 1965;
215 pages. (Barking: Elsevier Publishing Company Ltd.,
70s.)

The literature on approximation, a subject which has always
been of interest to mathematicians, has of recent years
experienced an explosive increase. For example, it is noted
by P. J. Davis in this volume, in a brief and very readable
article, that he found in just two years of Mathematical
Reviews over 120 papers and a dozen books on topics of
approximation theory that seemed relevant to practical
numerical analysis; these are listed in an appendix to his
paper. Also in this volume, in an account of recent Russian
literature on approximation, G. E. Lorentz lists over 150
publications since 1958, and notes that these are only the
more important and original papers, some 45-50 % of the total
output. In the light of these figures, it is clear that the mathe-
matician interested in approximation is now faced with a
formidable task in merely attempting to keep abreast of new
developments.

In such a situation, the value of a book of this kind is very
great. Here we have thirteen papers which were presented at
the Symposium on the Approximation of Functions held at the
General Motors Research Laboratories in 1964, each by an
expert of international reputation. The list of Contibutors
alone will arouse the interest of anyone acquainted with the
subject: F. L. Bauer, G. Birkhoff and C. de Boor, R. C. Buck,
E. W.Cheney, L. Collatz, P. J. Davis, A. A. Goldstein,
M. Golomb, G. G. Lorentz, J. R. Rice, A. Sard, E. L. Stiefel,
and J. L. Walsh. Although such a collection of papers cannot
possess the coherence of a book by a single author, it can and

does present a general, if incomplete, picture of the frontiers
of the subject in 1964.

Apart from the surveys by Davis and Lorentz already
mentioned, the subject-matter of the papers ranges over those
approximation topics which are of greatest interest to numer-
ical analysts; there are papers on approximation by poly-
nomials, by rational functions and by splines, approximation
to continuous functions and approximation on finite point
sets, as well as papers giving general theoretical background.
There is still evidence of a difference of viewpoint between
those who are interested in solving practical problems and
those who are concerned with proving theorems in functional
analysis (or, as Davis puts it, between the "Earth men" and
the "Space men") but perhaps the distinction is less sharp than
it was some four or five years earlier. Certainly there are
theoretical papers here which are concerned with the develop-
ment of algorithms, and this trend is surely to be welcomed.

It is difficult and perhaps unfair to pick out any one paper
for special mention, but in the reviewer's opinion that by
Birkhoff and de Boor on "Piecewise polynomial interpolation
and approximation" should be particularly noted for its
eminently readable presentation of a topic which is of
considerable current interest. The interest here is heightened
by expressions of the authors' opinions and recommendations;
controversial though these may sometimes be, they are
always stimulating and relevant.

The general standard of the papers is very high, and the
book is well printed. No numerical analyst should be
without it.

C. W. CLENSHAW
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