
The numerical solution of sequential decision problems
involving parabolic equations with moving boundaries
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Numerical methods are described for finding the boundary separating the continuation and
stopping regions for a class of sequential decision problems whose minimal cost function satisfies
a parabolic partial differential equation. The problem is shown to be similar to that of finding
the moving boundary in Stefan problems, and techniques used in the solution of Stefan problems
are modified for use in decision problems. Numerical results for a particular sequential decision
problem are given.

1. Introduction
When testing a hypothesis concerning the parameter of
a statistical distribution it is often possible to devise an
experiment in which observations are made in succession.
After each observation a decision can then be made to
accept the hypothesis, to reject the hypothesis, or to
carry out a further observation. Corresponding to these
decisions, a graph of the observations can be divided
into three regions. Provided observations lie in the
central continuation region, the experiment is continued.
However, if an observation falls in one of the outer
stopping regions the experiment is discontinued and the
appropriate conclusion drawn regarding the hypothesis.

In some sequential decision problems of this kind, the
decision to stop or continue can be based on a comparison
between the cost of making an immediate decision which
is possibly incorrect, and the cost of taking further
observations in the hope of reducing the chance of an
incorrect decision. Bather (1962) discusses several
examples of sequential decision problems in which the
minimal expected cost function satisfies a parabolic
partial differential equation. The continuation and
stopping regions are separated by curved boundaries on
which various types of boundary condition are given.
Explicit solutions of these problems are not usually
available but Bather develops analytical techniques for
rinding inner and outer approximations to the boundaries.

The purpose of the present paper is to show that the
solution of sequential decision problems of this type
can be found by the use of numerical techniques. In
order to illustrate the techniques in detail and provide
comparative results, the specific parabolic equation
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together with the boundary conditions

f{x(t),t) = <f>(x(t)), t > 0

where <f>(x) = f (2TT)~ " 2 exp (-iy2)dy

will be investigated. However, unless a statement is
made to the contrary, the methods described are appli-
cable with only slight modification to more general
sequential decision problems.

Since <f>"(x) + x<f>'{x) = 0, the function u{x, i) ==f(x, t)
— <f>(x) satisfies the same form of parabolic equation as
f(x, t), namely
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but with the modified boundary conditions

u(x(t), t) = 0, t > 0

•^WO. 0 = 0, f >0

^ ( 0 , 0 = (2w)->/2, r > 0.

(1.5)
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* Royal College of Advanced Technology, Salford 5, Lanes.

294

This formulation shows clearly the similarity of
sequential decision problems to the group of moving
boundary problems generally referred to as Stefan
problems (see, for example, Douglas (1961), p. 46).

Numerical methods which have been developed for
Stefan problems and which can be modified for use in
decision problems are described briefly in Section 2.
In Section 3 a modification of a discretization due to
Douglas and Gallie (1955) is described in more detail.
This can be combined with the use of Lanczos r-methods
developed by Wragg (1966) to give an efficient means of
determining the boundary x(t) from the system (1.5),
. . ., (1.8). Numerical results are given in Section 4.

2. Numerical methods of solution
A number of finite-difference schemes have been

proposed and used in the numerical solution of Stefan
problems. Trench (1959) used a fixed time step k and
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space step h and derived a simple scheme giving the
temperature distribution explicitly for each successive
time step. A method described by Crank (1957) involving
Lagrange interpolation formulae for points near the
boundary is somewhat similar. Both methods, however,
suffer from the usual stability condition associated with
the simple explicit finite-difference method of solving
the heat conduction equation, k < \h2. Ehrlich (1958)
proposed a more complicated method, using fixed space
and time steps, based on the Crank-Nicolson method
(1947); the numerical evidence presented indicated that
this gave satisfactory convergence to the true solution.

Evans, Isaacson and MacDonald (1950) have developed
an alternative approach to the solution of Stefan
problems in which the boundary is found as the solution
of an integral equation, and the temperature distribution
is given by an integral involving the boundary. Using
Laplace transforms on the time variable, an ordinary
second-order differential equation in the space variable
is obtained which is solved analytically. Inverse trans-
formation then yields the integral for the temperature
distribution from which the integral equation for the
boundary is derived as a consequence of the boundary
conditions.

Sack (1965) has used Fourier transforms on the space
variable to transform the decision problem (1.5), . . .,
(1.8) into the integral equation

3. Combined Douglas-Gallie and Lanczos x-methods

The technique described by Douglas and Gallie (1955)
can be combined with the use of Lanczos r-methods
described by Wragg (1966) to provide an efficient and
flexible method of solving decision problems.

In the Douglas-Gallie method the step in space is
kept fixed but the time step is varied so that for each
step in time the boundary moves through precisely one
space interval. That is, equal intervals Ax are taken in
the x-direction and variable intervals Ar, in the f-direc-
tion. With this discretization, Uit „ denotes an estimate
of u(x, t) at the mesh point

n—1

x = xi = = tn =
1=0

Since A/o is infinite, numerical calculations are not
possible unless some modification is introduced to
eliminate Ar0. However, assuming that C/oo = 0,
formal finite-difference representations of (1.5), . . .,
(1.8) for the interval A/o imply that

UU1 = 0, UOtl = 0, £/_,,, = - (2TT)- ' / 2 A X ,

r, = (87r)-«/2/(cAjc) (3-1)

the value of t{ agreeing with the asymptotic behaviour
of the boundary derived theoretically by Bather (1962),
p. 608.

exp (—}x2) = 2c
d6 tx\6)ie

s m h

In particular, putting x = X(t) in (2.1) yields a non-
linear integral equation for the boundary of the decision
problem. Equation (2.1) can be solved numerically by
means of simple quadrature and iteration using

X(t) (2.2)

to approximate X{f) for large t and stepping backwards
in time. This approach does not seem as versatile as
the methods described in Section 3, but the integral
equation can be of considerable use in analytical investi-
gations since it provides a means of obtaining asymptotic
expansions for the boundary.

A more useful numerical method is due to Crank
(1957) which involves transforming the problem so that
the moving boundary becomes fixed. Applying this
method to the system (1.5), . . ., (1.8) the singularity in
Tiu/lix at infinity can first be removed by the trans-
formation

£ = xt,T= l/t (2.3)

and then the boundary can be fixed by the transformation

V = £/f i (2-4)

where £, = tX(t). Finite-difference methods can then
be used to solve the transformed problem.

In practice, therefore, for a given value of Ax the
values in (3.1) are assumed as the starting point for
numerical work, that is £/,,„ is taken as an approxi-
mation to w(x, i) at the point

n— 1

x = x, = /Ax, t= tn=Yi Af,-

Thus at a general value /„,
/„ = /„_, - A/n_, (3.2)

and the finite-difference representations of (1.6), (1.7),
(1.5) and (1.8) become

Un,n = 0

U,,n

Ax
a^hr. = 0

(3.3)

(3.4)

(Ax)2

+ (/ - l)Ax-
2Ax

A*,-,
!i/| =0 (3.5)

for i = n, n — 1, 1, and
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Ax
(3.6)

Equations (3.3), . . ., (3.6) are solved by iteration. A
value of A/n_, is assumed, tn is evaluated from (3.2), the
£/,,„ are evaluated by recursion from (3.3), (3.4), (3.5),
and the test function

is evaluated. The value of A/n_, is then modified, using
an inverse interpolation procedure, until the value of the
test function becomes sufficiently small.

This process is used to provide starting values so that
the determination of the boundary can be continued by
the use of Lanczos T-methods which, for small intervals,
are more efficient in terms of storage space and computer
time (see Wragg, 1966).

The application of Lanczos T-methods to the system
(1.5), . . ., (1.8) is very similar to their use in the Stefan
problem. It is sufficient here to note that the canonical
polynomials Qm(x) for the differential operator

d2 d
-7-5 + x-j—h k
dx2 dx

where k = — 2/j/Af, are given by

Table 1

Values of t corresponding to the tabulated values of x
obtained by using a combination of the Douglas-Gallie
and T-methods with Ax = Af = 0-01. Asterisks denote

interpolated values

x = 0-l
x = 0-2
x = 0-3
x = 0 - 4
x = 0-5
x = 0-6
x = 0-7
x = 0-8
JC = 0-9

x= 1 0
x= 1-1
x= 1-2
JC= 1-3
x= 1-4
x= 1-5
x= 1-6

9-929
4-854
3-124
2-238
1-696
1-329
1-065
0-866
0-712
0-590
0-487*
0-409*
0-343*
0-289*
0-244*
0-205*

s=0
where

f O, if m < s or if (m + s) is odd

*£f rnl gJ^-2) o t h e r w . s e

si g(m)

The function g(r) is defined by g(r) = 1 for r < 0,
g(0) = k, g(l) = 1 + k and g(r) = (r + k)g(r - 2) for
r>2.

4. Numerical results
All the methods described in Section 2 have been

used to obtain numerical solutions of (1.5), . . ., (1.8)
with C = (8T7)~'/2. For those methods which have
stability restrictions, the calculations were restricted to
determination of the boundary over a small time interval.
The boundary has been determined, however, over the
whole range of / using the modified method of Douglas
and Gallie (1955), the solution of the integral equation
(2.1), the method of Crank (1957) involving transforma-
tion to a fixed boundary, and the combined Douglas-
Gallie and Lanczos T-methods described in Section 3.
Results from all these methods were in excellent agree-
ment.

Typical results obtained by using the method of
Section 3 are shown in Table 1. The modified Douglas-
Gallie method has been used with Ax = 0-01 to inte-
grate to x = 1 0 and then the Lanczos T-method has
been used with A/ = 001 to continue the integration to
x = 1-6.

Table 2

Boundary values of x corresponding to the tabulated
values of t obtained by using (b) a combination of the
Douglas-Gallie and x-methods with Ax = A* = 0-01,
compared with (a) an outer boundary and (c) an inner
boundary evaluated by Bather (1962). Asterisks denote

interpolated values

; = 0-l
t = 0-2
r = 0 - 5
t = 1 0
t = 1-5
f = 2-0
/ = 2-5

(a)

2-41
2-03
1-39
0-87
0-62
0-48
0-39

(b)

2-02*
1-62*
109*
0-73*
0-55*
0-44*
0-36*

(c)

1-33
1 0 7
0-74
0-52
0-40
0-33
0-28

Finally, Table 2 compares boundary values obtained
by using the method of Section 3 with upper and lower
limits of the boundary calculated by Bather (1962),
p. 613.
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Book Review

Pattern Recognition, by Leonard Uhr, 1966; 393 pages.
(London and New York: John Wiley and Sons Ltd., 68s.
cloth, 45s. paper.)

This is a most stimulating book. Leonard Uhr, who is well
known for his work on computer programmed models of
visual perception and cognition, has collected together from
a range of disciplines important papers relevant to pattern
recognition in all its aspects. He attempts "to focus on the
problem of pattern recognition as it would be posed by some-
one interested in the psychological functions of perception and
cognition". The result is a gold-mine of information and
ideas.

There are five sections each of which contains approxi-
mately five papers drawn usually from the last fifteen years,
but occasionally from considerably earlier. The first section
is particularly pleasing for it introduces us to the subject by
way of the thinking of such men as Peirce, Cassirer and
Wittgenstein. Thus we are able to decide for ourselves the
value of the more philosophical and theoretical approaches to
the subject.

The second section is devoted to some of the experimental
evidence on visual perception. Here are an important survey
and discussion by Vernon of the nature of perception, and an
early attempt by Attneave and Arnoult to study quantita-
tively the concept of shape—work which pioneered the
computer scientist's now established approaches. Section 3
deals with attempts to interpret the experimental evidence.
Deutsch's model of shape recognition in terms of a two-
dimensional network of cells is accompanied by a paper by
Dodwell discussing theories of discrimination learning with
special reference to shape discrimination. Here also is a
paper by Reichardt who is remarkably successful in modelling
aspects of visual perception in the beetle Chlorophanus.

Section 4 brings us to neurophysiological results which are
directly relevant to models of perception and their computer
implementation. Experiments to investigate the organization

and behaviour of retinal cells in the frog are described in a
paper by Barlow, and important results revealing how the
excitation of a specific visual cortex cell in the cat may be
determined by a complex but precise stimulus are described in
a paper by Hubel and Wiesel. A paper by Young presents a
neurophysiological model of shape perception in the octopus
and discusses the mechanics of motivation and reward.

Finally we reach the editor's own field, that of attempts to
create digital computer systems of perception and cognition
comparable with those we observe in nature. The approach
by way of adaptive networks is represented by Roberts'
extension of Rosenblatt's "Perceptron". More structured
models described include Selfridge's "Pandemonium", and
Uhr and Vossler's program that decides for itself what features
to look for in the unknown pattern. The section, and the
book, ends with a recent paper by Uhr himself in which he
surveys the present and future of pattern recognition programs.

Uhr has made a rather personal selection of papers, but I do
not at all regret this. His own views are sufficiently ordered
to bind together material from many sources, and, even where
he is perhaps being unorthodox, as in his willingness to accept
introspection as a valid source of information, he is almost
always convincing. Thus I find this book an excellent
introduction to, and brief survey of, the work of the psycholo-
gist of perception and the computer scientist trying to program
feature extraction and pattern recognition. Although the
latest work in the computer area, for example that of
Kamentsky and Liu, and Marrill's Cyclops project, is not
included, Uhr in his preface makes clear to where the reader
should next turn.

The book is equipped with subject and name indexes, and
the bibliographies are often very extensive. It is a pity that so
desirable a work is marred, in the reviewer's copy at least, by
printing which has occasionally produced faded or blurred
pages. But this is a small matter.

JAMES DORAN

297

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/3/294/406309 by guest on 13 M
arch 2024


