
Some computational results of an improved A.D.I, method for
the Dirichlet problem

By G. Fairweather and A. R. Mitchell*

The alternating direction implicit (A.D.I.) method of the present authors (Mitchell and
Fairweather, 1964) is modified and used to solve the nine-point Laplace difference equation in
a square. The greater accuracy of the method, A4 as compared with h2 for the Peaceman-
Rachford method, where h is the mesh size, is achieved with no appreciable increase in time or
effort.

The new A.D.I, method is then combined with the Schwarz Alternating Procedure to solve the
nine-point difference equation in non-rectangular regions with sides parallel to the co-ordinate
axes. Special attention is given to the re-entrant L-shaped region.

1. Introduction
Consider Laplace's equation in two-space variables

blg

7>x2 (1)

subject to the boundary condition u{x, y) =f(x,y) for
(x, y) a point on the boundary of the unit square
Q., 0 < x, y < 1. If a uniform mesh of length h in each
co-ordinate direction is imposed on Q, then (1) may be
approximated at an internal node of Q. by

= 0, (2)

where / is a parameter, and 8x, 8y are the central-
difference operators in the x, y directions, respectively.
When / = 0 and — £, (2) yields the well-known five-
point and nine-point difference approximations of (1)
which are accurate to order h2 and h4, respectively. If
Nh = 1, the totality of equations (2) gives rise to (N — I)2

linear equations in (N — I)2 unknowns of the form

Bu=g (3)

where the matrix B may be written in the form

B =H+ V+fHV

and g is a vector of order (N — I)2 arising from the
boundary values of the problem. The matrices H and
V are such that if [Hu](x, y) denotes the component of
the vector Hu corresponding to the internal node (x, y)
of Q, and similarly for [F«](x, y), then

[Hu](x, y) = -u(x -h,y)
[Vu](x, y) S -u(x, y-h)

2u(x, y) - u(x + h, y)
2u(x, y) - u(x, y + h),

where the points (JC + h, y + h) are internal mesh points
of the region.

The present authors (Mitchell and Fairweather, 1964)
formulated an alternating direction implicit (A.D.I.)
method for solving (3) which may be written in the form

+ b2g (4)

where «(m), u^m+n are the mth and (m + l)th estimates
of H, the solution vector, «("•+'/2> is treated as an
auxiliary vector which is not retained from one complete
iteration to the next, r is a parameter, and bub2 are
scalars to be determined. The iteration procedure

described by (4) converges for all r i f /> ( — 2cos2—. V 1 ,

and so «(m) = «("'+" = » for m sufficiently large.
In order to find bx and b2, we eliminate H(m+'/2) from

(4) and set u(-m+l) — «(m) = «. This gives

[H+V +fHV]u = I

which reduces to (3) if

b2)I + U(r +f)b2

Thus the A.D.I, method for solving (2) in a square is

\

~f)S- J
It can easily be shown that each step of the method

given by (5) is consistent only if / = 0, when it reduces
to the Peaceman-Rachford method (1955). Because of
this lack of consistency for values of/other t h a n / = 0,
the A.D.I, method denned by (5) cannot be obtained
from the general formulation of A.D.I, methods given
recently by Douglas and Gunn (1964), unless, of course,
/=0.

It is shown by the present authors (1964) that provided
r is kept constant during the iterations, the best con-
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vergence rate for a given value of iV( = - j and/ is given

by
1/2

1/2'
(6)

and the associated value of r necessary to yield the
optimum convergence is

(7)

In fact, if the A.D.I, method (5) is used to solve (1), it
appears that a balance is required between the rate of
convergence (an optimum when / is large and positive)
and the accuracy of the difference formula (an optimum
when / = — £). It will now be shown by means of
numerical calculations that, when/ = — £, the improve-
ment in accuracy more than compensates for the slower
convergence, particularly in the case of variable iteration
parameters. In fact, (5) with/ = — £ is a better method
for solving the model problem of (1) in a square than
the Peaceman-Rachford method, which is generally
recognized as being the best of the existing methods
(Birkhoff, Varga and Young, 1962). The problem which
is used to illustrate this consists of equation (1) together
with the boundary conditions

u(0,y)=u(l,y)=0, 0< y < 1 :

u(x, 0) = u(x, 1) = sin nx, 0 < x < l . (8)

The theoretical solution of this problem is

u{x, y) = sech — cosh n(y — •£) sin -nx. (9)

Each experiment is started with u(0\x, y) = 0, for all
(x, y) inside the unit square.

2. Variable iteration parameters
If the iteration parameter r in (5) is allowed to vary

and take the value r,-(l < i < m) for each of m successive
iterations, then it can easily be shown following Birkhoff,
Varga and Young (1962), that the optimum parameters
for the A.D.I, method (5) are those which minimize

m a x , - y
I—I ' i

(10)

where

« = / + • and b = / +
2 cos2

27V

Several authors have obtained parameter sequences
which are simple to use and which approximately

Table 1

No. of Wachspress parameters

\

10
20
40
50

100
500

1000

0

4
4
5
5
6
8
9

- *

4
5
5
5
6
8
9

minimize (10) for the Dirichlet problem in a square.
One of the most satisfactory is that presented by
Wachspress (1957) who obtains the parameter sequence

1 - 1

' , = a Q , 0 = 1,2, . . . ,m) (11)

where m is the smallest integer such that

where S = \/2 — 1. This is the parameter sequence
used in the present paper and we refer to the values of
r; given by (11) as the Wachspress parameters.

It is shown by Birkhoff, Varga and Young (1962) that
in general the Peaceman-Rachford method with Wach-
spress parameters is superior to all variants of the
method of successive over-relaxation for the numerical
solution of the Dirichlet problem. This is particularly
so when N is large. We now compare the Peaceman-
Rachford method which is (5) with / = 0, with the
optimum A.D.I, method given by (5) with / = —$,
using Wachspress parameters in both cases.

The number of parameters required for a given value
of N is calculated from (12) both fo r / = 0 a n d / = —$.
The results are shown in Table 1. There is no significant
difference in the number of parameters required in the
two cases. For the values of N quoted, only N = 20
and N — 50 require one more parameter in the optimum
case than in the Peaceman-Rachford case. The values
of the Wachspress parameters themselves are shown in
Table 2 for N = 10, 20 and / = 0, - £ .

Calculations are carried out for / = 0 and — £ with
N — 10 and 20, and one sequence of parameters is
required for convergence in each case. Each calculation
is continued until the error, that is, the difference
between the theoretical and the computed solutions of
(1) settles down in the seventh decimal place. The
errors at the centre node of the square where the
theoretical solution is 0 • 398,536,8 are shown in Table 3,
and the improved accuracy of the A.D.I, method with
/ = —i is demonstrated. In general, the number of
iterations required for convergence is the same for the
optimum method as for the Peaceman-Rachford method.
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Table 2

Wachspress iteration parameters

X
10

20

0

0-512,542,815,5
1-750,874,996,0
5-981,087,158,5

20-431,729,094,5

0-503,096,979,3
2-739,443,045,7

14-916,702,960,1
81-223,819,398,8

- *

0-345,876,148,8
1-343,372,308,4
5-217,616,668,0

20-265,062,427,9

0-336,430,312,7
1-325,467,780,9
5-222,076,525,4

20-573,931,430,2
81-057,152,732,1

In addition, the relative amounts of arithmetic per
iteration are comparable in the two methods, and so
the considerable improvement in accuracy is achieved
without additional machine time.

3. Extension of method to more general regions
The A.D.I, method given by (5) applies only when the

region under consideration is rectangular. We now
investigate the possibility of using (5) with / = — £ on
non-rectangular regions, bearing in mind that a nine-
point difference approximation of (1) can only be
employed when the boundaries of the region are parallel
to the co-ordinate axes. Except for the square or
rectangle, however, regions with boundaries parallel to
the axes do not lend themselves directly to solution by
the A.D.I, method given by (5) with/^=0. This will
be illustrated by means of a simple example.

Suppose it is required to solve Laplace's equation in
the region shown in Fig. 1. It is required to find the
value of the function at the circled numbered mesh
points. If the nine-point formula (2) with / = —£ is
used, we obtain the set of equations (3) where

u =
and "2

L"3j

However, for this problem,
H + V - \HV = * f -20

4
4

4
—20

0 - 2 0

and so the A.D.I, method (5) with / = — \ will not
solve the required set of equations.

However, the A.D.I, method given by (5) can be used
in regions with boundaries parallel to the axes, in
conjunction with the numerical alternating procedure of
Miller (1965), which is a numerical analogue of the
Schwarz alternating procedure (Kantorovich and Krylov,

Table 3

" \
10
20

0

-0-004,687,2
-0001,178,3

-i

-0-000,000,1
-0-000,000,0

Table 4

X
10
20

0

- 0 003,241,3
-0-000,824,3

- *

-0-000,000,1
-0-000,000,0

1958). This procedure enables one to solve the Dirichlet
problem for Laplace's equation on the union of two
overlapping plane regions, provided the Dirichlet prob-
lem is solvable on each separately, and that the boundaries
of the regions intersect at non-zero angles.

To illustrate how this numerical alternating procedure
can extend the use of the A.D.I, method (5) to more
general regions, we consider the solution of Laplace's
equation in the L-shaped region, illustrated in Fig. 2,
which consists of the unit square with a square of area
4/25 removed from one corner. There is no special
significance in this region and in fact any L-shaped
region can be considered. For convenience, the
boundary values at nodes on AB, BC, CD and FA are
taken from (8), and those at nodes on DE and EF
from (9). Thus the theoretical solution of the problem
is given by (9). Calculations are again carried out for
N = 10 and 20.

This problem is solved first by direct application of
the Peaceman-Rachford method to the L-shaped region
using Wachspress parameters. Although the theory on
which the determination of these parameters is based
does not apply in this case, since the matrices corre-
sponding to H and V no longer commute, it has been
shown by Young and Ehrlich (1960) and Price and

Fig. 1
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Fig. 2

Varga (1962) that their use produces reasonably rapid
convergence of the iterative procedure. The parameters
are given in Table 2 for N = 10, 20 a n d / = 0, and the
Peaceman-Rachford method converges after six sequences
of these parameters in each case. The maximum errors,
which occur at the node x = 1/2, y = 3/10 where the
theoretical solution is 0-479,827,2, are given in Table 4.

The problem is next solved using the A.D.I, method
(5) with / = — £ together with the Schwarz alternating
procedure. The L-shaped region is divided into two
overlapping rectangles BCDG (region Rx) and ABHF
(region R2) and, initially we place w(0)(*, y) = 0, for all
(x, y) inside the region. By means of (5) with / = — £
and one sequence of the appropriate Wachspress para-
meters, a solution is obtained in R[ with the values of
u along GE equal to zero. This calculation gives a first
estimate of the function u along EH which enables a
solution to be obtained in R2, again using (5) with
f= — \ and one sequence of the Wachspress para-
meters. A new estimate of the values along GE is thus
obtained. This procedure is continued until

- u<-m ~7u<-m\x, y)\ < 10

for all (x, y) inside the region. The maximum errors
after seven applications of the alternating procedure are
given in Table 4, again at the node x — 1/2, y = 3/10.

In view of the fact that the convergence of the overall
procedure depends on the convergence of the A.D.I,
method together with the convergence of the alternating
procedure, the latter depending only on the geometry of
the region (Miller, 1965), it is difficult to give a meaning-
ful estimate of the rate of convergence for the iterative
method for overlapping regions.

In principle, there is no limit to the number of over-
lapping regions to which the alternating procedure can
be extended, and so theoretically the A.D.I, method can

be used to solve Laplace's equation to h4 accuracy in
any region bounded by lines parallel to the co-ordinate
axes, provided no singularity in w or its derivatives occurs
anywhere in the region. In practice, however, the
method becomes rather tedious if a large number of
overlapping regions occurs. It should be noted that
Saul'ev (1963) has also devised a technique for using
A.D.I, methods in non-rectangular regions. This
method involves the solution of a related problem in the
smallest rectangle which encloses the original region.

4. Singularities in the L-shaped region

In the last section, a simple example was chosen to
illustrate how the Schwarz alternating procedure can be
used in conjunction with the A.D.I, method of (5) to
solve the Dirichlet problem in an L-shaped region, and
h4 accuracy was obtained uniformly over the field.
However, in many physical problems, the boundary
conditions are such that the function vanishes on the
straight boundaries meeting at the re-entrant corner,
and so the solution of Laplace's equation in plane polar
coordinates can be written in the form

« = S
n=\

sin f nO

where the origin of the coordinate system is taken at the
corner [see Fox (1962), p. 303]. Accordingly, there is a
discontinuity in some derivative at the re-entrant corner,
and any finite-difference method will lose accuracy in the
vicinity of the corner. This point was discussed to some
extent by Young (1955) who used successive over-
relaxation methods to solve five- and nine-point replace-
ments of Laplace's equation in an L-shaped region, and
showed that for a prescribed set of boundary conditions
the solution obtained from the nine-point replacement
was considerably more accurate than that from the five-
point formula even in the vicinity of the re-entrant
corner. As the theoretical solution of the problem
considered by Young is unobtainable, the nature of the
singularity at the re-entrant corner is unknown.

In order to discuss this point further, we consider
three model problems in classical hydrodynamics where
singularities occur at the re-entrant corner, (r = 0).
The problems consist of:

(1) flow round a right-angled bend where the stream
function « is given by

u = r2'> sin-6

and singularities occur in first and higher derivatives
with respect to r;

(2) flow past an infinite wedge with a TT/4 semi-wedge
angle, where

and the singularities occur in the second and higher
derivatives;
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Table 5

\ /

" \

10
20

0

(a) 0016,885,3 (6) 0000,261,6
(a) 0 006,666,6 (6)0-000,113,8

- *

(a) 0011,254,2 (6)0 000,250,3
(a) 0 • 004,418,4 (6) 0 • 000,092,0

Theoretical solutions: (a) 0-186,579,5 (b) 0-793,700,5

Table 6

X
10
20

0

(a) 0-001,248,0 (6)0-000,121,1
(a) 0 • 000,273,2 (b) 0 • 000,027,5

- *

(a) 0-000,462,6 (6)0-000,015,9
(a) 0 • 000,073,8 (6) 0 • 000,002,4

Theoretical solutions: (a) -0-040,197,3 (b) -0-287,647,6

Table 7

\ /

" \
10
20

0

(a) 0 • 000,170,8 (6) 0 • 000,045,9
(a) 0 • 000,040,8 (6) 0 • 000,011,6

(a) 0 • 000,006,6 (6) 0 • 000,000,1
(a) 0 • 000,000,3 (6) 0 • 000,000,0

Theoretical solutions: (a) 0-001,865,8 (6)—0-091,080,2

(3) flow past an infinite wedge with a TT/4 semi-wedge
angle where the stream line u = 0 has three branches at
the corner. Here the stream function is given by

Q

u = r8/3 sin-0,

and the singularities are in the third and higher
derivatives.

These problems are solved first using (5) with / = 0
and next using (5) with / = — £ together with the
Schwarz alternating procedure. In each problem an
L-shaped region is considered which has the right-
angled corner or wedge tip as the re-entrant corner. The
straight boundaries which intersect at the corner are the
stream lines u = 0. The remaining boundary values of
the stream function u are taken from the respective
theoretical solutions.

For the three problems described, comparative errors
in the two methods for N = 10, 20 are shown in
Tables 5, 6 and 7, respectively. Results are quoted after
six sequences of the Wachspress parameters for / = 0
and after six applications of the alternating procedure
f o r / = —$, (a) at the node (1/2, 3/10) which is nearest
to the corner and where the error is a maximum, and
(b) at a typical point in the field away from the re-entrant
corner. The nine-point formula ( / = — £) is always

the more accurate, particularly for problems (2) and (3).
In the light of these results, it is probable that the
problem considered by Young is similar to problem (2)
or problem (3).

The present authors are indebted to D. E. Rutherford
for pointing out that in problems arising in classical
hydrodynamics involving an L-shaped region with
M = 0 on the boundaries meeting at the re-entrant
corner, this corner is either an infinite velocity point
(problem (1)), or a stagnation point (problems (2) and
(3)). In the latter case, the discontinuity is in the second
or higher derivatives, and the nine-point formula,
although losing accuracy, will be significantly more
accurate than the five-point formula.

From the above evidence, it appears that the numerical
solution of the Dirichlet problem in an L-shaped region
is less prone to error than the numerical solution of the
corresponding eigenvalue problem. For example, a
recent account of methods for solving the latter problem
(Reid and Walsh, 1965) shows that the nine-point
formula gives a slightly poorer result than the five-point
formula for the lowest eigenvalue.

As far as the present authors are aware, there have
been only two previous attempts to solve the nine-point
Laplace difference equation by means of an A.D.I,
procedure. The first was by Samarskii and Andreev
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(1963) who considered alternating direction methods for
solving the iterative formula

(1 - rS2x)(l - rSpV"^1) = [(1 - rSx2)(l - rSy2)

+ r(8x2 + 8y2

It is not possible to factorize the right-hand side of this
formula, and so it cannot be split into Peaceman-
Rachford form like (5). As a result the examination of
the convergence of the procedure is considerably more
difficult and the method more complicated than the
method of the present paper. The second attempt was

by Cannon and Douglas (1964) who proposed a three-
level alternating-direction iterative method. The pre-
sence of the extra level, of course, adds undue complica-
tion to the numerical procedure.
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Book Review
Principles of Coding, Filtering and Information Theory, by

Leonard S. Schwarz, 1963; 255 pages. (London:
Cleaver-Hume Press Ltd., 72s.)

Information Transmission, by Elwyn Edwards, 1964; 133 pages.
(London: Chapman and Hall Limited, 15s.)

Here are two admirable books on the same subject, but
written for very different people—Schwarz for the mathe-
matical engineer and Edwards for the experimental psycholo-
gist. As this is not evident from the short titles, care should
be taken to select the right book before ordering from a
catalogue! Schwarz's Principles of Coding, Filtering and
Information Theory covers modern statistical communication
theory, coding, generalized harmonic analysis, signal detection
and feedback communication, all treated in an elementary but
fully professional manner. It is distinguished by exceptional
clarity of expression, and every noteworthy aspect of the

subject is introduced in the one convenient volume, which is
well referenced.

Elwyn Edwards' Information Transmission is entirely
different because it makes no assumption of mathematical
literacy on the part of the reader. It comes as a shock to find
that the experimental psychologist is thought to need an
explanation of brackets and indices, but in thirteen pages the
author gives all the mathematics he needs. (The definition of
probability was demolished by Jeffreys long ago, but no
matter.) It has always seemed to the reviewer that experi-
mental psychologists cannot do anything very much with
information theory except to use its definitions and terms.
These provide him with something to plot. At the present
stage, as at ten years ago, one can only hope that the concepts
prove suggestive—clearly the author's hope also. He is to be
congratulated on explaining the subject so simply and so
readably.

P. M. WOODWARD
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