
An algorithm for the calculation of the pseudo-inverse
of a singular matrix
By David Mayne'1

An algorithm for the calculation of the pseudo-inverse of a singular matrix is derived. The method
is motivated by Wiener-Kalman filtering theory and uses successive "observations" to update the
"estimation" of the pseudo-inverse. Illustrative and numerical examples are given so that the
speed and accuracy of the method may be compared with ordinary inversion. Although the speed
of the method may be made to approach that of ordinary inversion, to achieve reasonable accuracy
double precision arithmetic must be employed with a consequent reduction in speed.

1. Introduction
The pseudo-inverse is often useful in minimization
problems. Thus in some applications of control theory
(or filtering theory) it is required to find the linear
control (or filtering) law defined by:

u = Ax

which minimizes the quadratic cost function

V(u) = a + iuTRu + uTCx

where R is symmetric.
If R is invertible

A = R~lC.

If R is singular, the optimum value of u is Ax, where
now

A = - R+C

where R+ denotes the pseudo-inverse of R.
Zadeh and Desoer (1963) define the pseudo-inverse as

follows. If A is a m X n singular matrix of rank p,
then the n x m matrix A + is the pseudo-inverse of A if:

(1)

(2)

(3)

A+Ax = x for all

A+z = 0 for all zem(A) J_ = JV(AT)

A+(y + z) = A+y + A+z for all ye$!(A)
and a\\ze0l(A)_\_

where 3?(A),J/'(A) denote, respectively, the range and
null space of A, J_ denotes orthogonal complement,
and T denotes transpose.

In the derivation of the algorithm use will be made of
filtering theory (Kalman, 1960) (or regression analysis)
although a separate proof of the algorithm is given.
Suppose at stage r — 1, an estimate Sr_t of a set of
/n-parameters 9 is known ($r_i and 6 are w-vectors)
and the variance of the estimate is P f _ , . />

r_I is a
m X m symmetric matrix defined by

(yr is a known w-vector) can be used to provide an
improved estimate Sr of variance Pr:

P = P , 4--

avv is the variance of the measurement noise vr which
is assumed to have zero mean. This updating algorithm,
assuming perfect measurements (o-0B = 0), will be used
in §2.

2. Derivation of the algorithm

Let xp denote a set of p linearly independent
Tvectors of dimension n chosen from./f C4)J_ = &(AT).

Since A has rank p the vectors xx • • • xp constitute a
basis fori/f (,4)_L. The/? w-dimensional vectors y\ . . . yp

are calculated using equation (1)

yr = Axn r=\...p (1)

Thus yre&(A), r = I . . .p . yx . . .yp are linearly inde-
pendent and constitute a basis for £%(A). From the
definition of the pseudo-inverse we have:

A+Axr = xn r = 1 . . .p
i.e. xr = A+yr, r = 1 . . .p. (2)

If we denote the j ' h row of A+ by the w-dimensional
vector dj, then equation (2) may be written:

(xr)j = yT
r9j, r=l...p, 7 = 1 ...n (3)

where (jcr)̂ - is the / * component of xr. (xr)j may be
regarded as an "observation" of the m unknown para-
meters 6j, as in the estimation problem of §1; the noise
vr has zero variance. With this motivation the following
algorithm for obtaining dJs j = 1 . . . n, is proposed:

Then, the r'h scalar observation xn where

xr = yjd + vr
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p — p — —

= 0,, j = \ . . . n

Pseudo-inverse of a

(6)

(7)

i.e. equations (5) and (6) are used iteratively, with the
boundary conditions of equation (4), to obtain 6/j>),
which will be shown to be equal to the/* row of A+.

It is necessary to establish some properties of Pr and

6j(r). From equation (6)

Pryr = 0, r=\...p.
Also:

P - \ l - Pr

(8)

r i = crpr_1yr-l = 0 .

Pryr-2 = CrPr_,yr_2 = CrCr_,Pr_2yr_2 = 0.

Thus: P,.yk = 0, k < r, r = 1 . . .p (9)

where yke@(A).

Consider now a vector z orthogonal to the space
spanned by the linearly independent vectors yx . . . yr:

Now:
y]z = 0, s = 1 . . . r.

P0 = I .-. TV = ^

(10)

— z

(since y]Poz = yfz = 0)

P 2 = P X -

Thus: Prz =

= z etc.

(11)
for all z orthogonal to j ' , . . . yr.

yr+] consists of two components, yr+l, the ortho-
gonal projection of yr+l into the space spanned by
j»i . . . yr, and yr+l, that component of yr+, orthogonal
to v, . . . yr. From equations (9) and (11)

= P,yr+

= Pr+\

(since yr+\ =

singular matrix

If we let Q(r) denote the matrix whose /* row is Sj(r),
equation (12) becomes

0WA = xk, k < r, r = 1 . . . p. (13)

In particular

=l ...p. (14)

Consider now a vector z orthogonal to the space
spanned by v, . . . yr. From equation (5):

Therefore
z^/1) = 0.

Also, from equation (5)

But zTPr_ xyr = (Pr_ xzYyr = zTyr = 0, r = 1 . . . />.

Therefore z^/r) = zr^(r - 1).

But z%(\) = 0.

Therefore zT0j(r) = 0, y = 1 . . . n

i.e. Q{r)z = 0, for all z orthogonal to j , . . . j r -

In particular

Q(p)z = 0, for all ze^(^)J_. (15)

We can now use equations (14) and (15) to show that
the matrix Q(p) constructed from Sj(p), j = 1 . . . n,
satisfies the definition of the pseudo-inverse. Let

p

x = 2 £,x,; i.e. x is any vector i , depending

on the choice of ^ . . . £p, since x{ . . . xp constitute a

basis for ^. Let y =

Then, from equation (14)
p

Q(P) 2
/i

(16)

i.e. for all

Equation (16) is property (1) of the definition of the
pseudo-inverse. Equation (15) is property (2). Property
(3) is obviously satisfied. Therefore

Consider now the properties of #,-(/•). From equation
(5):

yj8fc) = (*r)j.

Also, from equations (5) and (9)

yj-^jir) = yj^djir - 1) = (*,_,),-

(since yT-\P,-\yr = yJPr-iyr-i = 0).

Similarly yj-jfc) = yj-26j(r - 1) = (xr_ 2)y etc.

Thus yie/jr) = {xk), k < r, r = 1 . . . p . (12)

H 313

Q(p) = A+ (17)

i.e. the matrix whose rows are 6j(p),j = 1 . . . n, is the
pseudo-inverse of A.

It only remains to show how a set of linearly inde-
pendent vectors from Jr(A)±! x, . .. xp, may be obtained.
First we note that 3&(AT) = ^V(A)±. Denote the
columns of AT, i.e. the rows of A, by the n-dimensional
column vectors .f „ r = 1 . . . m. Obviously ;tre./f/"(/0-L
r = 1 . . . m, and we have to select p linearly independent
vectors from the set x, . .. xm. Obtain the vectors
yx...ym where
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yr = Axr, r = 1

i.e. yr is the r'h column of AAT.

To obtain yr, r — 1

Pseudo-inverse of a singular matrix

m 3.1 Illustrative examples
Two simple examples are described to illustrate the

inner products xjx,,
. . m, we have to evaluate all the
s = 1 . . . m, t = 1 . . . m. The

vectors xr and yr, required in equations (5) and (6), are
selected from the set xk, yk, k = 1 . . . m, as follows.
Assume that xx . . . xr and y, . . . yr have already been
selected and that Sj(r), j = 1 . . . n, and Pr have been
evaluated. We now select yk from those vectors of the
set pi . . . ym which have not been previously used or
discarded. The requirement for selection is that yk is
linearly independent of yt . . . yr. If it is not, then

since:

and

Pryk = o

9k =

(18)

i=\

Pry, = 0, / = ! /-.
Therefore all yk which satisfy equation (18) are dis-
carded; to allow for numerical error the first yk which
satisfies the relation

\PJk\ > e (19)

where | . | denotes a suitable norm of a vector and e
is a suitably chosen small positive number, is called
yr+! and used to evaluate 6/r + 1), Pr+ \. The selection
procedure is then repeated to select yr+2-

3. Algorithm A
The algorithm for calculating the pseudo-inverse can

now be summarized.

1. Denote the m rows of A by the n-dimensional vectors
x, . . . xm.

2. Calculate the m w-dimensional vectors

P i • • - y m

yr = Ax,.,

where

r = 1 . m

i.e. yr is the rth column of AAT.
3. Set 0/0) = 0,7 = 1 . . . n, and Po = /.
4. At stage r select the first vector yk (from those

vectors of the set which have not been previously
used or discarded) which satisfies equation (19).
Call this vector yr+t.

n, and P5. Calculate #/r + 1), j = 1
equations (5) and (6).

6. Repeat (4) and (5) until $,(/>), j
obtained. This occurs when all

r+l using

= 1
the

yk, k = \yk, m, have either been used

. . n, is
vectors

or dis-
carded.

7. A+ is the matrix whose jth row is

Approximately
2n 3pm2 1
I 1 =— + 2pmn multiplica-

tions are required for large m, n. If m = n = p this
becomes 4n3 multiplications.

method.

0) - L2 2 i\

Therefore x, =
T
1
1

» X2 —

"2"
2
2

- [.3
can be used

' • — ^

= 0 J;2

Since

<?,(0) = 02(O) = 03(O)

(x,)i = (x2)i = W i

discarded

= 0.

= U then

15

1 2
1 2
1 2

(ii)

can be used

p, =

y2 _ .e. J2 can be used

/> - r° °i
2 ~ Lo oj

0,(0) = 02(O) = 03(O) = 0
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Pseudo-inverse of a singular matrix

4.2 Algorithm C
yr may be obtained using the Gram-Schmidt ortho-

gonalization procedure. Assume that xs, ys, s = 1 .. .
r — \ have already been obtained. Then

4. Simplified algorithm
Let yr denote the orthogonal projection of yT on to

the space spanned by yt . . . yr-\, and yr the component
of yr orthogonal to j , . . . yr-\. Then

Pr + yr)
Tyr = f,y,

From §2

Thus yJPr-\yr =

Define xr, xr as follows:

Note that xr and xr are not necessarily orthogonal.
Equation (5) may now be written

4.1 Algorithm B
If yr can be calculated without using Pr_i, the

algorithm can be simplified.
yr may be expressed as follows:

r - l

J r = 2 *?s>V
i=l

From §2

0(r — \)ys = xs, s < r — 1
0(r - l)j;r = 0

r - l

•'• *r = 0(r - l ) j r = ©(/• - l)[pr + yr] =
r - l r - l

and Axr = £ - ^ ^ = S ^ ^ J = JV
J=I i=i

i'r = yr - yr

= Axr — Axr

= Axr.

Therefore the simplified algorithm becomes

0(0) = 0

xr = xr — «(r —where

The criterion for selecting yk to serve as yr is

(AxrY(Axr) > e2.

r - l

r = yr- 2

where

It can be shown that
r - l

X r Xr

Thus algorithm C is:

0(0) = 0

where

and

xr — xr

r _yjy_s
s~y]y;

The criterion for selecting yk to serve as yr is that
yjyr > e2-

Because large errors may result in the calculation of
A+ if yjyr is small even though greater than e2 (see §5)
it is necessary to modify the algorithm slightly if reason-
able accuracy is to be achieved under these conditions.
Thus if e2 < yjyr < rj2, where r\ is a suitable norm,
then a new xr and yr are chosen as follows:

xr = xr/rj

yr = Axr.

The orthogonalization procedure is then repeated to
give a new xr and yr. The algorithm using this feature
will be referred to as the modified C algorithm.

5. The selection criterion
The rank p of the pseudo-inverse is determined by the

number of independent vectors yx . . . yp in the set
p\ • • • ym which comprise the columns of AT. A
numerical criterion is used to judge independence. The
selection or non-selection of a vector from the set
j , . . . ym can cause large variations in A+. This is best
illustrated by means of a simple example (using
algorithm C).

AAT = Li i +
315
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Pseudo-inverse of a singular matrix

A =

where

y\y\
f / 2

.'• yz =

The criterion for selecting y2 is that

If y2 is discarded:

If j>2 is selected:

and/? = 2.

It can be seen that A+ changes dramatically since — is

large. Since y2 is obtained as a difference between large
quantities, the percentage error in the elements of y2
can be considerable if y2 is small. The term

will then have large elements (I/771 in the example) with
possibly large errors. Any method of finding the
pseudo-inverse has to be able to reject non-independent
vectors; the selection of a vector which has only a small
orthogonal component will always lead to large terms
in the pseudo-inverse. However, it is possible that
alternative methods may be found which have better
accuracy than the methods proposed in this paper.

6. Numerical examples

6.1 Inversion of a 6 x 6 non-singular matrix
To compare the algorithm with ordinary inversion

the following matrix was selected:

1
3

9

5

8
2

2
4

- 2

8
1

5

j

1

1
- 2

6
7

2
- 8

4

7
J

5

3
1
6
4

4

2

7
2

8
- 3

3
- 1

To judge accuracy the matrix was inverted twice, and the
average absolute error of each element of the resultant
matrix calculated (note, (A+)+ = A).

(a) Ordinary Inversion
Time for single inversion: 4 units
Average absolute error after two

inversions: 3-5 x 10~7.
(b) Algorithm A (double precision)

Time for single inversion: 26 units
Average absolute error after two

inversions: 36 x 10~7

(c) Algorithm B (ordinary precision)
Time for single inversion: 5 units

(d) Algorithm B (double precision)
Time for single inversion: 13 units
Average absolute error after two

inversions: 121 x 10~7.
(e) Algorithm C (double precision)

Time for single inversion: 14 units
Average absolute error after two

inversions: 1 x 10~7.

It can be seen that the accuracy of algorithm C is
better than that of the ordinary inverse though the
computing time is larger.

6.2 Inversion of a 6 x 6 singular matrix
(a) The pseudo-inverse of the matrix A was obtained

using algorithm C where now:

A =

Rows 5 and 6 are identical. The elements of the pseudo-
inverse had values in the range 0-3 x 10~2 to 0-15.
As before, to test the accuracy the pseudo-inverse of the
pseudo-inverse was obtained and compared with A:

Time for single inversion: 12 units
Average absolute error after two

inversions: f X 10~7.

(b) The calculation was repeated with the last element
of row 6 (i.e. the number 3) replaced by 3-000001.

1
3
9
5
8
8

2
4

- 2
8
1
1

- 1
1
1

- 2
6
6

2
- 8

4
7

- 3
- 3

3
1
6
4
4
4

7
2
8

- 3
3
3
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Pseudo-inverse of a singular matrix

With the test number s = 10~7, the matrix was treated
as singular (rank 5) and the pseudo-inverse almost
identical to the pseudo-inverse of the singular matrix
obtained:

Average absolute error after two
inversions: 1 x 10~7.

6.3 Inversion of a 6 X 6 near-singular matrix
To test the accuracy of the pseudo-inverse on ill-

conditioned matrices the matrix A identical to that of
§6.2 with the last element of row 6 (i.e. the number 3)
replaced by 3-001 was used.

(a) Ordinary inversion:
Average absolute error after two

inversions: 2-3 X 10~4.
(b) Pseudo-inverse (algorithm C, double precision):

Average absolute error after two
inversions: 0-15.

It should be noted that the inverse of A had elements
of order 104 in columns 5 and 6 and small percentage

errors in these columns in the pseudo-inverse (errors of
average absolute value 0-03) caused large percentage
errors in the pseudo-inverse of the pseudo-inverse.
The accuracy is clearly not sufficient for near singular
matrices. The performance of the modified C algorithm
(§4.2) was much better.

(c) Pseudo-inverse (modified C algorithm, double
precision):

Time for single inversion: 16 units
Average absolute error after two

inversions: 2-5 x 10~4.
The modified algorithm has an accuracy very close to

that of ordinary inversion for the near-singular matrix.
The value of rj employed (see §4.2) was 0-03.

The author is very indebted to his colleague Mr. P. M'
Newbold both for helpful discussions and valuable
assistance in the numerical evaluation. The author also
found the referee's comments most helpful; the develop-
ment of algorithms B and C was motivated by these
comments.
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Book
Error in Digital Computation, Volume II, edited by L. B. Rail,

1965; 228 pages. (London and New York: John Wiley
and Sons Ltd., 51s.)

Volume I, which was the proceedings of an advanced seminar
conducted by the Mathematics Research Centre of the United
States Army at the University of Wisconsin during October
1964, was reviewed here in January 1966. Volume II is not,
as might be imagined, a continuation of the above proceed-
ings; instead it is the proceedings of another seminar at the
same place and on the same subjects, held during April 1965.
The titles and authors of the eleven papers in the present
volume follow:

(1) Experimental Investigation of Unnormalized Arithmetic,
by R. L. Ashenhurst, 36 pages.

(2) Error Bounds for Computations with Continued
Fractions, by Peter Henrici, 16 pages.

(3) Error Bounds for Asymptotic Expansions of Special
Functions in the Complex Plane, by F. W. J. Olver,
22 pages.

(4) Error Analysis of Transformations based on the Use of
Matrices of the Form I—2wwH, by J. H. Wilkinson,
26 pages.

(5) Automatic Local Coordinate Transformations to Reduce
the Growth of Error Bounds in Interval Computation of
Solutions of Ordinary Differential Equations, by
R. E. Moore, 38 pages.

(6) Differential Inequalities and Error Bounds, by Johann
Schroder, 40 pages.

(7) Discrete Representations of Partial Differential Oper-
ators, by David M. Young and John H. Dauwalder,
38 pages.

Review
(8) Upper and Lower Bounds for Solutions of Integral

Equations, by R. W. Brown, 12 pages.
(9) Convergence and Error Bounds for Approximate

Solutions of Integral and Operator Equations, by
P. M. Anselone, 22 pages.

(10) Applications of Functional Analysis to Error Estimation
by L. Collate, 18 pages.

(11) Error in the Solution of Linear Programming Problems,
by Philip Wolfe, 14 pages.

Papers 1 and 5 are developments of the work reported by the
same authors in Volume I, and paper 4, by J. H. Wilkinson, is
a further contribution to the work reported there by E. L.
Albasiny. The remaining papers are on subjects not covered
in Volume I.

The titles are self-explanatory. Some work is published
here for the first time, e.g. in the first three papers. Papers 6, 8
and 9 describe recent work using the techniques of functional
analysis, some of whose applications to error estimation are
surveyed in paper 10. Paper 7 gives extensive tables of
coefficients for 9-point representations of second-order partial
differential operators in two variables. Paper 11 gives an
assessment of the importance of error in linear programming,
describes the Simplex method and measures used to combat
error, but reports the practical non-existence of a theory of
error for linear programming.

The book is a valuable collection of recent work on error in
digital computation, and the papers in it are well supplied
with references. It will be useful to readers wishing to
acquaint themselves with the present state of the subject, or
seeking new problems to investigate.

T. FULLER
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