
A note on numerical procedures for approximation
by spline functions

by Ian Barrodale and Andrew Young*

A spline function is a piecewise polynomial of degree m joined smoothly so that it has in — \
continuous derivatives. When used as an approximating function the spline provides a smooth
yet flexible curve of relatively low degree.

The purpose of this note is to show how standard numerical procedures can be used without
change to calculate the best (L, and Lx) spline approximation, of given degree and joints, to a
discrete point set.

Introduction

Definition. Sm, k(x) is a spline function of degree m with
joints at X\ < x2 < . . . < xk if and only if it possesses
the following two properties:

(a) Smt k(x) is a polynomial of degree m in each of the
intervals (— oo, xt), [xu x2), . . ., [xk, oo).

(b) Smt k(x)eCm~' i.e. it has continuous derivatives
up to order m — \.

The set of splines of a given degree and with given joints
is closed under addition and subtraction, while inte-
gration (differentiation) converts a spline into another
spline with the same joints but of the next higher (lower)
degree. The spline avoids the discontinuities in slope that
occur with ordinary piecewise polynomials, while the
relaxation of the requirement of continuity in the wth
derivative allows it flexibility.

In the theory of interpolation the use of piecewise
polynomials predates Newton. The restriction to smooth
jointed interpolation formulae appeared in actuarial
literature of the 19th century under the heading of
osculatory interpolation. This appears to have been
first introduced by Sprague (c. 1880); an example is
provided by Hermite's interpolation formula. Further
development in methods of osculatory interpolation,
including the derivation of a smoothing formula which
interpolates by means of spline functions, was under-
taken by Jenkins (1927). However, the term "spline
functions" was introduced some twenty years ago by
Schoenberg to whom credit is due for much of the recent
study of their properties.

Much interest has been centred on the role of the
spline as an interpolating function, where it is required
to fit a set of data points exactly. Necessary and suffi-
cient conditions have been given by Schoenberg and
Whitney (1953) for a spline Smik to interpolate an
arbitrary set of m + k + 1 points. In addition to some
numerical interpolation procedures, Greville (1964) dis-
cusses the case where the given data points coincide with
the joints of a spline function and there are m -f- 1 special
conditions imposed.

There exists a unique cubic spline S, with k joints xt
contained in an interval [a, b], possessing the following
minimal property: among all fe C2 [a, b] which inter-
polate a given function F at the points x-, the integral

[/" C*)]2 dx is minimized by S. Further properties

of cubic splines and periodic splines are given by Walsh,
Ahlberg and Nilson (1962), extensions to odd degree
splines by De Boor (1963), and to splines of arbitrary
degree by Schoenberg (1964).

The term elementary spline functions has been given to
functions of the type (x — a)™ where, for any real
constant a,

(x - a)"! =
(x - a)"

0
if x > a
if x < a

The mih derivative of an elementary spline function is
ml H{x — a), where H is the Heaviside function. The
mth derivative therefore has a discontinuity at x = a,
where there is a step of ml. The suitability of these
functions for the representation of any spline function
was noted by Schoenberg and Whitney (1953). Every
spline function can be represented uniquely as the sum of
a polynomial and a linear combination of elementary
spline functions.

Thus, Sm> k(x) = Pjx) + S c,{x - (A)

where Pm is a polynomial of degree m, and the product
of c; and m\ gives the step in the mth derivative of
Sm, k(x) a t the ith joint.

The following result from the theory of Chebyshev
approximation by spline functions involves monosplines
(for which there is an analogue of the fundamental
theorem of algebra (Schoenberg (1958)) and also
(Schoenberg (1965)) a one-one correspondence with
quadrature formulae). A monospline of degree m with
joints x, < x2 < • • • < xk is a function M of the form
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where S is a spline function of degree m — 1 with the
same k joints. Johnson (1960) has proved that for all
values of m and k satisfying m > 1 and k > 0, there
exists a unique monospline M%, k which deviates least
from zero on [— 1, 1]. Clearly the Chebyshev poly-
nomial Tm = M*,o.

When the joints are specified splines and monosplines
are linear approximating functions. Moreover, the
representation (A) allows best approximations to be
easily computed using existing algorithms.

Numerical procedures
The Lx and Z,K (or Chebyshev) linear approximation

problems for a discrete point set were stated as follows
by Barrodale and Young (1966).

Given a function f(x) defined on X — {xu . . ., xN}
n

and an approximating function F(A, x) = 2 aj<f)j(x),

determine

(i) min 2 \F(A, x) -f(x)\ (I^ problem)
AeE» xcX

(ii) min max\F(A, x) —f(x)\ (L^ problem)
AtE« xeX

Both were restated as problems in linear programming,
and in either case the structure of the resulting matrix
of coefficients allows the simplex algorithm to be used
on a condensed tableau. We supplied the ALGOL
procedures MINSUMMOD and MINMAXMOD which
perform all the necessary computations.

In view of the representation (A) it is obvious that a
spline Sm< k is a linear approximating function. Using
the above notation

F(A, x) =

m+k + 1

We can therefore determine best approximations by
splines Sm> k using the procedures MINSUMMOD and
MINMAXMOD unaltered. The storage space is the
same as for a polynomial of degree m + k, while
numerical experiments we have done show that fre-
quently less computing time is needed for the spline
approximations.

Comments
Fig. 1 is an example of spline approximations to a

function with a discontinuous first derivative. The
function f(x) was defined by 41 values of \x\ for
JC = — 2(0-1)2. It has been approximated in both
norms by a cubic spline with one joint at x = 0. These
best approximations are symmetric to the y axis and only
part of the complete graph is shown.

The choice of number and position of joints for any
particular set of data is based on experience and intuition,

Fig. 1.—A section of the graph of best Ll and Lm cubic spline
approximations, with one joint at x = 0, to f(x) = \x\ for

x = - 2(0 1)2 (indicated by +'s)

for, as Rice (1964) remarks, "the problems associated
with the 'best joints' have not been investigated to any
extent". For the set of data shown in Fig. 1 it is
obvious that x = 0 is a good joint for an ordinary
piecewise approximation, but perhaps a bad point at
which to insist on continuous first and second derivatives.
From empirical evidence it appears that the cubic spline
with one joint at x = 0 gives a better LK approximation
than any other cubic spline with one joint, or two joints
(neither at x = 0), or even four joints where no joint is
close to x = 0.

If a good choice of joints has been made then close
spline approximations of low degree are often possible.
Control of round-off error is a resulting practical advan-
tage. A theoretical disadvantage of spline approxi-
mation arises because we are not dealing with Chebyshev
sets. This does not affect the existence of best approxi-
mations, but can affect both uniqueness and character-
ization in the Lm norm. See Rice (1964).

The requirement that a spline Sm> k has all of the
first m — 1 derivatives continuous may be too stringent.
In fact for a given function f(x), a spline Sm< k may
provide a better approximation than a spline Sm+Uk,
where both splines have the same k joints. In practice
it may be desirable to insist on continuity in only the
first and second derivatives (say) but to use an approxi-
mating function of greater degree than the cubic. A
"weak-spline" function of the form Fmi fcj p, where

Fm, k, pO) = Pmix) + S Ci(x — x,)"+ where p < m

would provide a sequence of functions which (for given
k joints and fixed p) has a monotonic decreasing error
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of approximation with increasing m. These approxi-
mations can again be computed by using MINSUMMOD
and MINMAXMOD without alteration.

Thus these algorithms provide adequate means of
obtaining splines and similar approximations without
recourse to special computing methods.
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Correspondence

To the Editor,
The Computer Journal.

Sir,
Papers by Parker and Crank (1964) and Keast and Mitchell

(1966) have recently considered the stability of Crank and
Nicolson's procedure (Crank and Nicolson, 1947) for solving
the parabolic partial differential equation

with u(x, 0) = f(x), 0 < x <
ditions

= —— (1)

1, and with boundary con-

^ + bou = Ao(/); x = 0, / > 0

Their results conceal what is an essentially simple situation.
Consider the preparation of (1) for solution by a computer
in the two following stages:

(a) The right-hand side of (1) is replaced by a suitable
difference scheme in Ax, and the boundary conditions are
incorporated to give (cf. Parker and Crank, 1964)

1
[- Uw + / ] ; w(0)= c (2)

where if (0 is a vector with N + 1 components approximating
the value of u(x, t) at x = 0, Ax, 2Ax, . . . , NAx. The

physics of the problem can be a valuable guide at this stage:
indeed it is safest to set up (2) directly from a discrete physical
model (see Rosenbrock and Storey, 1965, pp. 8-15).

(b) The time derivatives in (2) are replaced by a difference
scheme to give (cf. Parker and Crank, 1964)

vn+l _ vn |"_ Uvn+\{ | ] ( )[ ]}
(3)

[/ + rdU]v+l = [/ - r{\ - 6)U]V + k"; v° = c (4)

where if approximates w(nAi) and r = At/(Ax)2. So far
as this stage is concerned we have the following simple
result:

If (2) is stable (resp. asymptotically stable), and if $ < 6 < 1,
r > 0 [or if 0 < 6 < i and 0 < r < 1/(| - 0)Amax(£/)]
then (4) is stable (resp. asymptotically stable).

Thus all the real difficulties regarding the stability of (4)
are associated with stage (a), which belongs to the physical
formulation of the problem rather than to Crank and
Nicolson's procedure. Of course if (2) is unstable (or stable
but not asymptotically stable) we have no right to expect (4)
to be stable (or asymptotically stable).

To prove the result stated it is only necessary to write

where

N

i=0

Uzi - XiZi = 0

(5)

(6)

(Continued on p. 324)
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