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Previously published algorithms
The following Algorithms have been published in the Com-
munications of the Association for Computing Machinery
during the period January-June 1966.

273 SERREV

Produces the coefficients of the power series
N

y' = 2 C:.x' where y is the solution of
j

f(y) = S
i= 1

=g(x) = S Btx'andAx = 1.
1

274 GENERATION OF HILBERT
DERIVED TEST MATRIX

Produces n X n matrices a with the properties
(1) The elements a [i,j] are positive integers
(2) The inverse has elements (—1) f (i + j) X a [ij]
(3) The degree of ill-conditioning increases rapidly with n.

275 EXPONENTIAL CURVE FIT
Fits a curve defined by the equation y = a X exp (b X x) + c
to a set [xh yj\ ofn data points, using the Taylor Series modifi-
cation of the classical least squares method.

276 CONSTRAINED EXPONENTIAL
CURVE FIT

Fits a curve defined by the equation y = a X exp (b X x) + c
to a set [Xj, yl\ ofn data points, using the Taylor Series modifi-
cation of the classical least squares method, constraining the
curve to pass through the point (xk,z).

277 COMPUTATION OF CHEBYSHEV
SEMES COEFFICIENTS

Approximates the first N-\-\ coefficients, an, of the infinite
Chebyshev series expansion of a function F(x) defined on
[-1,1].

278 GRAPH PLOTTER
Gives an approximate graphical display of a multivalued
function y [i,j] of x [/], on a line printer.

219 CHEBYSHEV QUADRATURE
Evaluates the integral of f(x) between a and b by fitting the
2"+' point Chebyshev polynomial to the integrand.

280 ABSCISSAS AND WEIGHTS FOR
GREGORY QUADRATURE

281 ABSCISSAS AND WEIGHTS FOR
ROMBERG QUADRATURE

282 DERIVATIVES OF e*/x,
cos (x)/x AND sin (x)/x

283 SIMULTANEOUS DISPLACE-
MENT OF POLYNOMIAL ROOTS
IF REAL AND SIMPLE

Computes the n roots xofa polynomial equation simultaneously
with quadratic convergence.

284 INTERCHANGE OF TWO
BLOCKS OF DATA

Transfers the contents of a [1 ] , . . . , a [mi] into a [n + 1 ] , . . . ,
a [n+m] while simultaneously transferring the contents of
a [n + 1], . . . , a [n+m] into a [1], . . . , a [n] without using
an appreciable amount of auxiliary memory.

285 THE MUTUAL PRIMAL-DUAL
METHOD

Solves the linear programming problem by the Mutual Primal-
Dual Simplex method.

286 EXAMINATION SCHEDULING
A heuristic examination time-tabling procedure for scheduling
m courses in n time periods.

Algorithms
Algorithm 12. SCALECHOLESKI

Miss C. M. Devine,
Medical Research Council,
Computer Services Centre.

procedmescalecholeski(B,n,scale,l) ;\aluen,scale ;integerw,
scale,l;nrrayB;

comment scalecholeski inverts a symmetric positive definite
matrix of order n stored as an upper triangle by rows in loca-
tions B[0] to B[nx(n + l)l2—l]. If scale = 1 each row and
column is scaled so that the diagonal elements are between
1 and 100, and the matrix is rescaled after inversion. On
exit I normally contains 0 but if the matrix is singular, or very
nearly so, I will contain the number of the row of the matrix on
which the inversion process breaks down. The expression
"very nearly singular" means that rounding errors in the
computing have been sufficiently large to make one of the
leading minors of the matrix either zero or negative.

The procedure contains three sub-procedures which find the
scale factors, scale the matrix, and invert it. The inversion
process is the Choleski method which is described in Davies,
"Statistical Methods in Research and Production", 3rd Ed.,
Oliver and Boyd, 1957, Chapter 8, Appendix 8B. The compu-
ting method is based on London University Library Routine 900
written by I. M. Kabhaza in EM A and CHLF3;

begin integerarrayP[l :ri\;
procedurefindscalefactors(B,P,ri) ;valuen

integerarrayP;integer/i;
begin integerp,/,y,A:;reabr;

k:=0;
for/ : = 1 step 1 until/ido
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beginy:=«—; + l ;x:=B[k];p:=O;
ifx<Othen gotoL13;
ifx > 100 • OthengotoL 12;
if*>lthengotoL13;

gotoL13;
L12:Ar:=001Xx;/7:=/7-l;ifx>100thengotoL12;
LU:P[i]:=p;k:=k+j

end
end;
procedurescalematrix(B,P,n); valuen ;array.B;

integerarrayPjintegern;
begin integer/,/,^,/?;

k:=0;
for/: = 1 step 1 untilndo fory: = /step I untilndo
beginp:=P[i]+P\J];B[k]:=B[k] x 10 fp;k:=k + l
end

end;

procedurecholeski(B,n,l); valuen ;array B ;integern,/;
begin realrf.x ;integer/M,y,p,^,r,5,/;

comment first stage of inversion is to replace the matrix B
by U where B= U'Uand U is an upper triangular matrix;

r : = / : = 0 ;
for/?: = 1 step 1 untilndo forq: =/>step 1 untilndo
begin*: = B[r]; if<? = 1 thengotoL4 ;if> = 1 thengotoL2;

s:=p — l;t:=q—l;
for/: — 2step 1 un ti Ipdo
begin*: =x—B[s] X B[t];

s:=s+n—j+\;t: = t+n—j+l
end ;if/?=7^thengotoL2;
Z4:ifx<0then begin l:=p;gotoLl5 end;
d: = Usqrt{x);
L2:B[r]:=xXd;r:=r + l

end;

comment second stage is to replace U by its inverse;
/ :=0 ;
forq: = 1 stepl untilndo

forp: = 1 step 1 untik/ — 1 do
begind:=0;r:=s+q—p — 1 ;m:=r+l;

fory: =^step 1 untilrdo
begind:=B[j]xB[m]+d;m:=m+n—p+s—j
end;B[r+\]: = -B[t]xd;s:=s+n-p + l

end;t:=t+n—q + \
end;

comment third stage forms inverse of B as product of
inverses of U and W;

r: =0 ;for/7: = 1 stepl untilndo
begins: —r ;forq: =pstep 1 untilndo

beginm:=r+n— q;d:=0;
for/: = rstep 1 unti lmdo
begind:—B\J] xB[s]+d;s:=s+\
end;B[r]:=d;r:=r + l

end
end;

X15:end;

itscale = 1 then
beginfindscalefactors(B, P,n) ;scalematrix(B,P,n)
end;
choleski(B,n,l);
Hscale = 1 thenscalematrix(B,P,n)

end

Algorithm 13. NORMALAREA A. Bergson,
Computing Laboratory,
Sunderland Technical

College.
Author's note:

NORMALAREA will find the area under a normal curve for

a given ordinate /, i.e. <f>(x) -j— f e~i*2dx. NOR-
•\/27r J_oo

1 r"1

MALAREA actually computes 4>x(x) = —r— e~*x2dx
V 2n JQ '

and if / > 0 then <f>(x) = 0-5 + (f>x(x), and for / < 0
# ) 05 ^WIf r < 4 then
the integral, i.e.

is calculated from the power series of

2 x 3 x 1 ! 22 x 5 x 2!

3 ! + 9 x 4 ! ' " J2 3 x 7 x 3 ! + 2 4 x 9

using a recurrence relation and stopping when the modulus
of the difference of two successive terms is < 10~9.

If t > 4 an asymptotic series, as derived by Scarborough (1),
is used; viz.

1 x 3

1 x 3 x 5 I x 3 x 5 x
t° tB

Terms in parenthesis are taken until the modulus of a term
is > the modulus of the preceding term. Again a recurrence
type relation is used.

NORMALAREA was coded in ALGOL for a National-
Elliott 803, and gave satisfactory results correct to eight
significant figures as checked with Biometrika Tables (2).
A similar procedure by MacLaren (3), procedure PHI, was
found to use more than three times the storage taken by
NORMALAREA, but was considerably faster. However,
using the parameters given in PHI, NORMALAREA was
more accurate.

References
(1) SCARBOROUGH, J. B. (1950). Numerical Mathematical

Analysis, pp. 391-4.
(2) PEARSON, E. S., and HARTLEY, H. O. (1958). Biometrika

Tables for Statisticians, pp. 104-10.
(3) MACLAREN, M. D. (1965). "Procedure for the Normal

Distribution Functions. Algorithm 272", Communica-
tions of the Association for Computing Machinery,
Vol. 8, No. 12, pp. 789-90.

real procedure NORMAL AREA(t);
value /; real /;
begin

comment the constants 2-506628275 (root 2 pi) and 10~9

should be quoted according to the accuracy of the machine on
which the procedure is implemented;
real ultu2,u3,a,al,tsq,tsq2; integer /;
al:= absif); tsq:= t x t; tsq2:= -5 X tsq;
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a:= 0;
//al < 4 then
begin

u\:=al;
for /: = 1, i -f- 1 while abs(u3 - «2) > 10~9 do
begin

u2:= tsql X (1 - / - /) x nl/(i x (1 + i + /));
a:=a + ul; n3:=wl; «1:=«2

end o/f;
a: =a/2-506628275
end /or / < 4

else
begin

«1: = 1;
for i: = 1, / + 1 while abs(u2) < absiul) do
begin

«2:= — «1 x //teg;
a : = a + «l; «3:=«1; ul:= u2

end o/i;
a := -5 - a x « p ( - /5a2)/(al x 2-506628275)

end for t > 4;
if / > 0 then NORMALAREA: = • 5 + a else

NORMALAREA := -5 - a
end of procedure NORMALAREA

Algorithm 14. SCAN NET B. J. Benzimra,
Ministry of Aviation,
London.

Author's note:
This algorithm is offered, in response to the plea of

J. Boothroyd (1), as an example of a non-trivial recursive
procedure which arose naturally.

Reference
(1) BOOTHROYD, J. (1965). "PERM. Algorithm 6", The

Computer Bulletin, Vol. 9, No. 3.

procedure scannetQJ); value/',/; integer/"J;
begin comment this processes a valid event-activity network

consisting ofnE events interconnected by nA activities.
At entry to the procedure the network is defined by the
global integer arrays Aterm, Adur, Achain [\:nA\,
Echain, Encom, Edat [1 :nE] as follows:—
Aterm\J] contains the terminating event number for

activity j
Adur [j] contains the estimated duration of activity j
Echain and Achain list, in chained form, the activity

numbers m,n,p, . . . , z leading out of event
k so that Echain[k]=m, Achain[m]=n,
Achain[n]=p . . . with the end of the chain
designated by zero, Achain[z]=0.

Encom[k] contains the total number of activities
leading into event k, unless k is a source
event for which Encom[k] = — 1. The pro-
cedure reduces to zero the entries for non-
source events.

Edat[k] contains the starting date, expressed as an
integer in suitable time units relative to some
datum, for all source events k. For non-
source events Edat[k]=0.

At exit from the procedure Edat[k] contains, for all k,
the earliest occurrence date for each event while
Acomp[\ :nA] contains the earliest completion date of
each activity. For a network with a single source

event s the single call scannet(Echain\s\,s) is sufficient.
For a network with multiple sources the procedure
must be called once for each source event. This may
be conveniently accomplished by

for i: = 1,/'+1 while /'< w.E do if Encom[i] = — 1 then
scannet{Echain[i],i). Only one variable is needed as
workspace irrespective of the depth of recursion and
integer k is thus global to the procedure;

if / # 0 then
begin k:=Aterm[i];

Acomp\i\. =Edat{J]+Adur[i];
Edat[k]:=\f Edat[k]>Acomp[i]then Edat[k] else

Acomp[i];
Encom[k]: =Encom[k] — 1;
if Encom[k]=0 then scannet(Echain[k\,k);
scannet(Achain[i],j)

end
end of procedure scannet

Algorithm 15. GRAM R. J. Ord-Smith,
Computing Laboratory,
Bradford Institute of

Technology.

procedure Gram (c,d,m,n,e); value m,n; array c,d;
integer m,n; label e;
comment The first four parameters are input parameters and
c,d are also output parameters. If at the call of the procedure
these arrays contain the coefficients of the (n — \)th and(n—2)th
degree Gram polynomials respectively (produced by a previous
call of the procedure) in order of increasing powers of x, and
followed by the normalizing factors of the polynomials, the
procedure replaces these coefficients and normalizing factors by
those of the nth and (n — \)th Gram polynomials and their
corresponding normalizing factors. If called with n = \ the
first and zeroth polynomials and their factors are initialized.
The user must, at call time, specify a label as his last parameter
to which the procedure will exit if it encounters the situation
n=0 or n=m.

The Gram polynomials p(m,n,x) with n=0 (1) m — 1 are a set
of polynomials possessing the property of discrete orthogonality
with respect to the equidistant key points x=—l,—l+\, . . . ,
0, . . . ,l—\,l where m=2x/+l.

Although the construction is effectively using the well known
recurrence relation relating three successive Gram polynomials,
this algorithm describes the simpler explicit generation of the
coefficients;
if n=0 v n=m then goto e else
if n = 1 then
begin d[0]:= 1; d\Y\:= m; comment this is the normalizing

factor for the zeroth polynomial;
c[0]:=0;c[l]:=2/(m-l);
c[2]:= wx(/7j+l)/(3 x(/n—1)); comment this is the n.f.
for the first polynomial;

end else
begin real a,b,t; integer i,k;

k:= nx(m—ri);
a:=(4xn-2)/k;
b:= -(n-\)x(m+n-l)/k;
t:=c[0];c[0]:=bxd[0];
d[0]:= t; t:= dl];
for / := 1 step 1 until n—2 do
begin c[/]:= axd[i— 1] + bxd[i];

d[i]:= t; t:=
end;
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end

c[n - 1]: =b x d[n — 2];
d[n - 1]: = *;</[«]: = c[n];
c[n]: = a x t;
c[n + 1]: = (m + n) X (2 X n — 1) X d[n]/((m — n) X

(2 x /z + 1));
comment fAw W ///e «./. /br the nth polynomial;

Editor's note
Material for this Supplement should be sent to the

Algorithms Editor
P. Hammersley,

The City University,
St. John Street,

London, E.C.I.

Correspondence {continued from p. 320)

This is always possible because U is similar to a symmetric
matrix. The solution of (2) when / = 0 is

N

or w(nA.t) = 2 °<-izi [exP (— '"A,)]".
1=0

(7)

(8)

On the other hand the solution of (4) with k = 0 is

V" = {[/ + r9U]-l[I - r{\ - ff)U]}"c (9)

+
(10)

The replacement of (2) by (4) therefore replaces each factor
exp (— rXf) in one time step of (8) by a factor

0)Af

1 + (11)

whence the result follows.
This simple relationship between the stability properties of

equations (2) and (4) does not necessarily persist when Crank
and Nicolson's procedure with 6 = i is applied to a non-
linear or non-autonomous problem (Rosenbrock and Storey,
1965, pp. 173-175). Some formulae giving improved stability
and truncation error have been suggested in an earlier note
(Rosenbrock, 1963).
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Yours faithfully,
H. H. ROSENBROCK

Control Systems Centre,
University of Manchester,
Institute of Science and Technology,
Sackville Street, Manchester 1.
16 June 1966.

To the Editor,
The Computer Journal.
Sir,
I should like to reply to the letter by K. Wright (this Journal,
May 1966, p. 115) about my paper entitled "Error curves for
Lanczos' 'selected points' method" (this Journal, January
1966, p. 372). I apologise for stating that Wright's statement
about the form for the residual (this Journal, January 1964,
p. 358) is incorrect. His letter clearly shows the source of
my confusion.

However, I do not agree with the simpler derivation in the
letter for the form of the residual. Although

r(x) = e{x) — e(x) — • • •

there is no justification in dropping the whole right-hand side
except for the first term. The derivation given in my paper
based on the Picard iteration does show how errors build up.

Incidentally, there are two typographical errors in my
paper. In Table 4, H3l should read —0 089142227 instead
of -0-08142227. In Table 5, G4l should read 0-37699459
instead of 0-376994519.

Yours sincerely,
W. KIZNER

Jet Propulsion Laboratory,
California Institute of Technology
4800 Oak Grove Drive,
Pasadena,
California 91103
1 August 1966
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Don't be surprised
0JM

I can brush away your punching problems too!
( ... Cards or Paper Tape)

With a staff of over 400 highly trained punch
operators, it is not surprising that A.D.P. is
recognised as the most efficient dataprep
organization in the United Kingdom. A nation-
wide delivery and collection service and the

strict adherence to accuracy and time schedule
contributes largely to the increasing success of
A. D. P. Whatever your punching problem, large or
small, A.D.P. can deal with it swiftly and econom-
ically at any of their regional service centres.

SERVICE CENTRES
ENGLAND
LONDON - Annabelle House, 28 Staines Road, Hounslow. Phone HOU 3294. Telex 262063.
BRISTOL- Southey House, Wine Street, Bristol, 1. Phone Bristol 26813. Telex 44657.
MANCHESTER - Royal Buildings, 2 Mosley Street, Manchester. Phone Central 5803.
BRADFORD - Oak Mills, Clayton, Bradford. Phone Queensbury 3496.
DERBY - Laurie House, Colyear Street, Derby. Phone Derby 48109.
NORTHAMPTON -39-41, Bridge Street, Northampton. Phone Northampton 39345.
SCOTLAND
BATHGATE - Gardners Lane, South Bridge Street, Bathgate, West Lothian. Phone Bathgate 3927

ADP AUTOMATIC DATA PROCESSING LTD.
Head Office: Annabelle House, 28 Staines Rd., Hounslow, Middlesex. Phone Hounslow 3294

A.D.P. For the best punching in the business!
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