
A scheme for manipulative algebra on a computer

By D. Barton*

This paper describes a scheme of programs that have been written to perform elementary
manipulation of multiple Fourier series. These are represented in their literal form in the
computer and a wide variety of operations may be performed upon them. The paper describes
the principles adopted while programming the scheme, lists a number of the principal operations
that may be performed, and presents two examples to demonstrate how the scheme may be
employed to solve certain types of equations.

Introduction
In this paper we shall describe a scheme of programs
that have been written to perform a limited quantity of
algebraical and trignometrical manipulation. This
scheme has been implemented on the Titan computer
in Cambridge and was originally designed to assist in a
projected analytical development of the Main Problem
of the Lunar Theory.

The scheme takes the form of a set of closed sub-
routines to perform various algebraical and trigono-
metrical operations, and the program has been written
in Titan (Atlas 2) assembly code. A program that
intends to perform manipulation using the scheme must
first be written in an informal language that resembles
the Titan Autocode, and subsequently hand-coded into
assembly language. However, the hand-coding stage is
very simple and it would be an elementary matter to
write an interpretive program to accept the original
"Autocode" and arrange to enter assembly code sub-
routines. Indeed the Strachey macrogenerator (Strachey,
1965) has been successfully used for this purpose.

Representation of expressions
The basic operations that the scheme is able to

perform are those of addition and multiplication upon
functions of the form

a = 2
ijk

where i,j, .

yo, •

S i n
+ ...+ k'y5)

(1)

. ., k' are integers in the range —63 < / < 63

. ., y5 are so-called harmonic variables

while Prj-Ic' is a polynomial in the arguments x0, . . ., x7.
The latter variables are referred to as polynomial-
variables and they may each occur to any degree in the
range 0 < n < 63. The polynomial Ppyl- has rational
coefficients and these are represented as the ratios of
integers that in absolute magnitude must all be less
than 239.

The number of variables that the function a contains,
together with the range of exponents and periods

associated with the several variables, were all chosen
with the particular problem of the lunar theory in mind.
However, the methods that have been used to represent
these functions on the computer and to manipulate the
data internally are, in principle, independent of these
restrictions.

In order to try to make efficient use of the machine
store it was decided to represent the algebraic expressions
as list structures. Accordingly the store was divided
into units, two words in length,f that are all initially
chained together to form a free list (see Woodward and
Jenkins, 1961). An algebraic expression is then repre-
sented as an ordered list of units into each of which is
packed the periods and phase of a periodic term
together with two pointers. The first pointer is the
address of the unit containing the next periodic term
in the list while the second points to the head of a chain
of units that each contain a term of the polynomial
coefficient. Thus a polynomial coefficient is represented
as an ordered list that branches from the main list of
periodic terms, the branch denoting multiplication.
When a unit is used to store a polynomial term it contains
the exponents of the several variables that may occur in
such a term together with a pointer to the next poly-
nomial term and a pointer to a unit that contains the
rational coefficient of the term.

Thus an algebraic expression is represented as an
ordered list structure in the computer store as shown in
Fig. 1. In order to ensure that there should be a unique
correspondence between actual algebraic expressions
and the list structures used by the computer, every
expression used by the several manipulative subroutines
must be presented in a standard form, and the output
from all subroutines must also be in that form. The
standard form is simply that in which the maximum
amount of algebraic cancellation has taken place and
in which every rational coefficient has been reduced to
the ratio of mutually prime integers. Further, an
expression in standard form has its periodic terms
arranged in a well-defined order according to its periods,
and each polynomial coefficient is similarly ordered
according to the exponents of its terms.

t The Titan has 64K of 48-bit words.

St. John's College, Cambridge, and University Mathematical Laboratory, Cambridge.

340

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/4/340/390160 by guest on 19 April 2024

1st periodic term

Manipulative algebra

-Pointer to start of expression held in fixed area of store

2nd periodic term

t

1st polynomial term in
coefficient of 1st periodic term

^Pointer to next
periodic term

t

Phase and periods
of periodic term

Exponents of
polynomial term

2nd polynomial term

p Q

Rational coefficient of
1st polynominal term representing
the number P/Q

>Pointer to next
polynomial term

Fig. 1.

The above means of representation of our expressions
ensures that whenever an expression is no longer
required in the computer the space that it occupies may
be immediately added to the free list of available space
and later conveniently reissued. No form of "garbage
collection" is necessary and complex shifting procedures
to obtain continuous large expanses of empty store are
entirely avoided.

Programming details
It has been mentioned above that the scheme was

originally designed to assist with an analytical develop-
ment of the lunar theory. The analysis required for this
theory is so extensive that it was doubtful whether the
scheme would be adequate to the task, and consequently
the primary consideration that has taken precedence
over all others while writing the program has been to
conserve the machine's store. It was not considered
important that the run-time system should operate
quickly. In order to reduce the demands made for
space at run time many of the manipulative subroutines
have been written in a form that overwrites the operands
that the subroutine uses. All subroutines that involve
only addition or term-by-term differentiation or inte-
gration are written in this form, and consequently they
make no demand at all upon the space allocation
routines, indeed many of them will cause the list of free
space to increase owing to cancellation.

However, any form of multiplication of the multiple
Fourier series with which we must compute will in
many cases give rise to a result that is substantially
more complicated than either of the operands. Hence

it is improbable that by overwriting the operands one
would contribute significantly to the general balance of
store during the multiplication procedure, and it was
therefore decided to program the multiplication to
conserve both the operands and the product. Neverthe-
less, experience of high-school algebra leads one to
believe that on many occasions when it is desirable to
form a product only part of the result is of particular
interest. In any form of approximation procedure it is
common to neglect in a result terms whose order is
suitably large. Frequently we require to expand a
function using Taylor's Theorem neglecting terms above
a prescribed order. It would indeed be unfortunate if
we should require to compute a result that could be
easily stored but were unable to obtain it because it
formed a part of another, more extensive, expression
that we had no room to store.

In order to try to minimize the chance of this occur-
rence each manipulative subroutine that involves
multiplication occurs in two forms. The first form gives
the exact and complete result of the manipulation while
the second form gives a restricted result. If the
restricted routine is called for then the user must specify
on entry to the routine the class of term that is required
in the result. When this is done a dynamic check is
incorporated into the manipulation and terms that are
not required in the result are removed. It is most
important to note that in this case no attempt is made
to store the complete expression that would result from
the use of the unrestricted routine.

The kind of restriction that may be imposed, of
course, depends upon the particular piece of manipu-

341

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/4/340/390160 by guest on 19 April 2024

Manipulative algebra

lation being undertaken, but in all cases it is possible
to restrict a result, including only those terms whose
degree in some specified polynomial variables is suitably
small, and consequently the scheme is able to undertake
analytic calculations using approximation methods with
great convenience. It is the author's view that the
inclusion of the restricted routines has made the whole
scheme usable and a great deal more powerful than it
would otherwise have been.

It has been previously remarked that the basic sub-
routines are those that perform multiplication and
addition. The addition subroutine must overwrite its
operands, and consequently reduces to a subroutine to
merge two ordered lists of periodic terms, or simply a
sorting program. When two periodic terms are found
having the same phase and periods then combination
occurs, the free list is increased and the polynomial
coefficients must be added. This addition again reduces
to an elementary sorting procedure and again leads to
cancellation. There are no difficulties in the coding and
the available free space cannot decrease. Similar
remarks apply to subroutines to perform formal dif-
ferentiation and integration with respect to one variable.

The multiplication procedure is a little more com-
plicated and proceeds as follows. To form the product
<x)3 where a and j8 are multiple Fourier series of the
form given in equation (1) the routine will take the first
periodic term of a and multiply it in turn by each periodic
term in j8. As each pair are multiplied they are linearized
to give two periodic terms of the product. At this stage
the restricted form of the multiplication subroutine
imposes its dynamic check upon the periods of these
new terms to ensure that they meet the user's require-
ments, if not then they are abandoned and the multi-
plication continues. Provided that the periodic terms
are retained their polynomial coefficients are next
multiplied term-by-term and another dynamic check
included on the resulting exponents in the case of the
restricted product. Each polynomial term produced is
added to the polynomial result so far obtained, by
using a sorting program, and ultimately the complete
product is associated with the two periodic terms by
means of pointers. These periodic terms are then
sorted into the sum of such terms so far, and the product
continues.

Two sorting techniques are employed. An elementary
merging program is used to sort the polynomial products
since these appear in order to some extent, while a tree
sorting technique is employed 10 sort the periodic terms
since these are generated at random.

The remainder of this paper will be devoted to a more
detailed specification of the several routines that make
up the manipulative scheme and to some examples of
their use.

The manipulative routines
The routines that destroy their operands and hence

cannot decrease the available free space are as follows.

(We shall use a, j3 and y to denote multiple Fourier
series in the standard form throughout.)

1. a := — a.

2. a :=

3. a :=

4. a := ^F

A: a, A: is a rational constant,

f adXj, no constant of integration is included.

da
dx,'

5. a.:=-\ <xdyt. Those periodic terms that depend
upon the harmonic variable y, are integrated with
respect to that variable and their sum forms the
first part of the result. Those terms that do not
depend upon j>, are collected together and their sum
forms a subsidiary result. It is the responsibility of
the user to take suitable action with such terms.

6. a := IT udyjdyj. This routine was included since
repeated use of routine 5 causes the result to be
sorted twice unnecessarily while routine 6 leads to
no reordering, and hence it is faster.

7 • ^

1. a : = -r- •
dy,
d2cc

a : =

9. a := a + j8.

10. a := a -]8.

TJiose routines that do not destroy their operands and
may make substantial demands upon the available free
space are as follows.

11. y ;= ajff. This routine forms the exact product.

12. y := the restricted product <x/J.

When calling this routine the user may arrange to
include in the result only those terms whose periods
satisfy any condition that he may care to impose and
also, similarly, to include only those terms whose
exponents satisfy some similar condition.

13. y : = a(x0, . . ., j8, . . ., x7 ; y0, • • •> yi)-

The multiple Fourier series j3 is substituted for a
polynomial variable into the expression a.

14. y ;= the restricted form of
a(x0, . . ., /3, . . ., x-i ; y0, . . ., y$).

The restrictions that may be imposed upon the terms
included in the result of this manipulation are con-
siderably less general than is possible with routine 12.
It is only possible to impose conditions of the form
{total degree in specified polynomial variables} < K
where K is some given constant.

342

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/4/340/390160 by guest on 19 April 2024

15, y := *(x0, . . ., x7 ; y0, . . ., x, . . ., y5)

where x = (noyo + . . . + n5y5) + $ and n;

integers; / =-- 0, . . ., 5.

Manipulative algebra

are

This substitution is undertaken upon the assumption
that ft is a small quantity and that Taylor series expansion
in terms of |3 is permissible. An example may help to
clarify the action of the routine.

Let us assume that a = sin (y0 + 3yl), § = x0 sin y2
and x = (j 0 + y2) + £. Then the result of using this
routine to substitute x for y0 would be to calculate the
expression

sin y2) [l - £ + £ - . . .

cos (y0 y2) [•£ - | j
and finally to reduce it to the standard form. The user
must specify on entry to the routine at what point the
Taylor series in jS are to be terminated.

16. y := the restricted form of
a(x0, . . ., x7 ; y0, . . ., x, . . ., y5).

Again the only condition that may be imposed on the
terms that are included in the result of this manipulation
must be of the form given for routine 14.

An input and output routine has been written for use
with the scheme that will read and output the multiple
Fourier series in a coded form that closely resembles the
manner in which such expressions are usually written
on paper. A program is available to evaluate numerically
any expression given numerical values for the fourteen
variables. A number of other housekeeping routines
and filing facilities are also available.

Examples of the use of the scheme
It is not intended to describe here the details of any

extensive calculation that has been undertaken using
the scheme, but rather to present two examples of the
manner in which the scheme may be employed to solve
elementary problems simply by repeated approximation.
Details of manipulations involving thousands of indi-
vidual terms that have been successfully undertaken
using the scheme have appeared elsewhere (Barton,
1966).

Let us consider the Kepler equation

/ = E — e sin E (2)

and see how it is possible to solve the equation to give

It is well known that the solution to this equation is
given by

F^fTIinH/. (3)

However, we may construct the solution using the

manipulative scheme in a very direct manner by the
method of repeated approximation. The first approxi-
mation to the solution that is accurate to order zero in
e is clearly E = /. Substituting this result into the
function e sin E using routine 16 and retaining terms of
order e we obtain the next approximation E = / + e sin /.
Again substituting this into e sin E and retaining terms

e2

of order e2 we obtain E = / + e sin / + — sin 2/ and so

on. The program required to perform this operation is
evidently very simple and uses only the substitution
routine and the addition routine to preserve the result
so far. However, the result obtained is the analytic
solution to the Kepler equation known coirectly to
some specified order in the variable e. The above
example serves to illustrate a technique that has been
found useful in many other applications. Using the
manipulative scheme it has been possible to solve by
repeated approximation simultaneous sets of equations
similar to the Kepler equation when the right-hand sides
were substantially more complicated than that of
equation (2) and when no solution of the form given in
(3) was known.

Our second example concerns the solution of the
Malhieu Equation

y" + (a - 2a cos 29)y = 0

where a is constant, a is a small parameter and the
primes denote differentiation with respect to 0. To
construct periodic solutions to this equation is of course
an eigenvalue problem, and we shall show how to
construct these eigenvalues and the associated periodic
solutions using an iterative algebraic technique on the
computer. Now it is evident that a periodic solution
to the equation exists in the form

y — cos md + O(a),

a = m2 + O(a),

where m is an integer.
Let us suppose that we have determined the solution

accurately to the wth order in a and that this solution
is yn and the approximate eigenvalue corresponding to
the solution is an. To advance the solution to order
n + 1 try y = yn + e, a = an + -q. Then clearly we
must have

e" + m2e + r) cos mO = Kn+, (4)
where

Kn+, = terms of order n + 1 in — yn{an — 2<x cos 29}. .

In order to avoid resonance that would give rise to a
nonperiodic solution we must clearly choose -q to be the
coefficient of the term in cos md in Kn+1 and hence
obtain the next approximation to the eigenvalue. It is
then a simple matter to write a subroutine to obtain a
particular integral to the resulting equation for e and so

343

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/4/340/390160 by guest on 19 April 2024

Manipulative algebra

obtain the next approximation to y. The process may
then be repeated.

It will be obvious that the examples given above make
extensive use of the restricted forms of the multiplication
and substitution programs, and in all the work that has
been undertaken with the scheme these restricted forms
have been more frequently used than the actual exact
routines themselves.

Acknowledgements
The author would like to express his thanks to the

Director of the University Mathematical Laboratory for
the use of the Titan computer on which all the work has
been done, and to Miss J. M. Wright who coded
the input routine and the routine to perform the
numerical evaluation of the expressions that are
manipulated.

References
STRACHEY, C. (1965). "A general purpose macrogenerator", The Computer Journal, Vol. 8, p. 225.
BARTON, D. (1966). "Lunar disturbing function", The Astronomical Journal, Vol. 71, p. 438.
WOODWARD, P. M., and JENKINS, D. P. (1961). "Atoms and Lists", The Computer Journal, Vol. 4, p. 47.

Correspondence
To the Editor,
The Computer Journal.
Sir,

On finding the eigenvalues of real symmetric tridiagonal
matrices

By A. J. Fox and F. A. JOHNSON

The Computer Journal has published such significant papers
on the Eigenvalue Problem that each new article on this topic
is likely to arouse widespread interest. Since I consider the
above paper to be misleading I hope you will permit me to
make some rather critical remarks.

The Sturm Sequence method (SS) can be made completely
reliable and as accurate as the word length permits. The code
is brief and involves no ad hoc decisions, but it is rather slow.
Almost any alternative is faster and several people have con-
cocted rival algorithms. However, the increase of speed was
usually bought at the cost of reliability, accuracy, or marked
growth of the code.

Criticisms which I make might be considered academic (in
the worst sense) were it not for the fact that there already
exist published algorithms which are by no means optimal
but which are superior to the algorithm proposed by the
authors. Perhaps my chief criticism is that even after reading
the references which they cite the authors persist in seeing
LL* and QR, not as alternatives, but as supplements to the
Sturm Sequence method.

Wilkinson has remarked that "often comparatively minor
changes in the details of a practical process have a dispro-
portionate influence on its effectiveness". To any theoretical
method there correspond many computer implementations,
some careful, some naive. In a comparison of performances
who knows which has been used? Although FORTRAN
and ALGOL serve well enough to define the order and
arrangement of a calculation they are clumsy in treatment of
underflow, overflow, and intermediate double precision.

The best of methods when poorly programmed can become
a useless algorithm. Surely the following questions should
nag any student of comparative algorithmics.

(a) Have I implemented the methods properly? Or am I
comparing a brilliant realization of one method with a
dim caricature of another ?

(b) Are my comparisons fair? Have I unwittingly loaded
the dice (parameters) in favour of one ? Are my tests
broad enough?

In my opinion these questions did not bother Fox and
Johnson sufficiently. Consequently their results are mis-
leading; different realizations have produced quite opposite
results.

Let us examine a few aspects of the paper in some detail.

1. Choice of parameters
Fox and Johnson remark that the errors in their answers

were usually about 10~8. In Table 2 there occurs an error
of 1(T7 (middle eigenvalue should be 0-42773454). This is
easily dismissed or overlooked, yet it is a clue. To what?

The authors replace bj by 0 whenever

b] < e = 10-10

This is equivalent to suppressing bt whenever

\b,\ < eI/2 = lO"5

and this can cause changes in the eigenvalues up to 10~5.
Why did the authors not find errors of 10~5? The bound

is certainly a realistic one.
The answer is given in a recent result of Kahan: for an

n X n symmetric tridiagonal matrix if

bl

\an ~an-\
< e and , < e

then |8A| < 3e. Here SA is the change produced in any
eigenvalue A by suppressing bn.

On most of the matrices tested by Fox and Johnson
\an — on_i| was eventually greater than 10"2 and so their
criterion happened to produce errors < 3 e/10~2 == 10~8.
However, in the case cited above the eigenvalue separation
and hence \an — «„_,j was 10~3 and another iteration would
have produced more accuracy. On the other hand for well-
separated eigenvalues their criterion would provoke unneces-
sary iterations.

In the absence of Kahan's result the authors should have
either (a) set e = 10~16 and guaranteed 8 decimals, or
(b) stated that with e = 10~10 the user can only be sure of
5 decimals.

Now (b) could be disastrous if eigenvectors were desired
as well and (a) would alter the time comparisons with other
methods. See below.

(continued on page 420)

344

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/4/340/390160 by guest on 19 April 2024

