
Experience with the Compiler Compiler

By R. A. Brooker, D. Morris and J. S. Rohl*

This paper records some experience with the Compiler Compiler, a compiler designed to facilitate
the writing of compilers. Since the project has been the subject of several articles, t we shall
assume the reader is conversant with the general ideas involved, and describe mainly how they
have worked out in practice, in the dozen or so general and special purpose compilers which have
been written with it. Finally we discuss the general utility of the project.

Just as ALGOL and FORTRAN are primarily designed
to handle arrays of floating point numbers, so the
Compiler Compiler (henceforth CC) is designed to
handle data structures of tree form which arise out of
syntactical analysis. Apart from this the two kinds of
languages have much in common. Thus a CC program
consists of a master routine and a set of subroutines,
one to process each type of source statement in the
language, and one for any auxiliary statements that it
may be convenient to introduce. These subroutines are
all at the same textual level, as in FORTRAN. The
master routine is always the same—it is supplied by the
CC—and operates as follows. It reads the source
program a line at a time and parses it with respect to
the grammatical rules of the language which are the
phrase and format definitions supplied by the user. The
parsing algorithm (actually a subroutine of the master
routine) identifies the format to which the line of source
program corresponds and produces a record (in the form
of a tree) of its internal syntactical structure. The
master routine then calls the routine associated with the
format and translates the instruction recognized. After
this control returns to the master routine which reads
the next line of the source program.

The following extracts from a FORTRAN compiler
should remind readers of the main features of the
language. We consider the ARITHMETIC STATE-
MENT

FORMAT [SS] = [VARIABLE] = [EXPR]

where the meta-variables are defined as

PHRASE [EXPR] = [PRECEDING ±][TERMj
[TERMS]

PHRASE [PRECEDING ±] = [±], NIL
PHRASE [±] = + , -
PHRASE [TERMS] = [±j[TERM][TERMS], NIL
PHRASE [TERM] = [FACTOR][FACTORS]
PHRASE [FACTORS] = *[FACTOR][FACTORS],

/[FACTOR][FACTORS], NIL
t See References.
None of the published descriptions of the system is entirely

satisfactory, that of Rosen (1964) being perhaps the most objective.
R. B. E. Napper (Computer Science Dept., Manchester Univ.) has
also written a very readable account of the system from the users'
point of view, which is available on request.

* Department of Computer Science, The University, Manchester 13.

345

We introduce the auxiliary statements

FORMAT [AS] = LOAD [PRECEDING ±]
[TERM]

FORMAT [AS] = ACC = ACC[±][TERM]
FORMAT [AS] = DIV BY [FACTOR]
FORMAT [AS] = MULT BY [FACTOR]
FORMAT [AS] = LOAD [PRECEDING +]

FACTOR
FORMAT [AS] = DUMP ACC IN [VARIABLE]

Examples of two of these routines are

ROUTINE [SS] = [VARIABLE] = [EXPR]
LET [EXPR] = [PRECEDING ±][TERM]

[TERMS]
LOAD [PRECEDING ±][TERM]

2) -> 1 UNLESS [TERMS] = [±][TERM]
[TERMS]

ACC = ACC [±][TERM]
-> 2

1) DUMP ACC IN [VARIABLE]
END

ROUTINE [AS] = LOAD [PRECEDING ±]
[TERM]

LET [TERM] == [FACTOR] [FACTORS]
LOAD [PRECEDING ±] [FACTOR]

2) _> l UNLESS [FACTORS] =/[FACTOR]
[FACTORS]

DIV BY [FACTOR]
- = • 2

1) -> 3 UNLESS [FACTORS] = * [FACTOR]
[FACTORS]

MULT BY [FACTOR]
- > • 2

3) END

The other [AS] routines follow similar lines calling in
progressively simpler routines until at the lowest level
the actual translated instructions are planted.

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/4/345/390175 by guest on 19 April 2024

Compiler Compiler experience

Table 1

Storage space used by compilers

Phrases
Phrase routines
Formats
Format routines
CC routines
PERM lists

Size of compiler proper

PERM

Deleted material

EMA

998
470
642

9,670
4,528

0

14,218

2,908

7,168

ALGOL

871
1,389

77
9,695
3,326

250 (approx.)

15,358

602

10,240

FORTRAN 2

494
528
261

9,194
4,244

200 (approx.)

15,798

1,299

8,704

AA

369
531
293

6,359
3,452

920

11,924

4,895

12,213

AB

\ 6,656

764

7,420

4,895

—

Notes 1. The CC routines include the MASTER routine, and the
routines for parsing, line reconstruction and pre-editing,
and some of the [BS] interpretive sequences.

2. PERM refers to the preloaded library of input/output
routines and special functions used by the object
programs of the compilers.

3. PERM lists refer to the name and property lists of
the preloaded PERM. These lists are needed (and
expanded) in the course of compiling.

4. The deleted material has been referred to in the text: it
includes phrases, formats, and routines.

The phrases and formats
Phrase definitions are represented in the computer by

the tree structures described in Brooker, et al. (1962),
henceforth referred to as Trees and Routines.

The format definitions are recorded as though they
were the alternatives in a single phrase definition. Four
classes of format are basic to the system (others can be
introduced if desired).

[SS] the class of source statement formats.

[MP] the class of master phrases (e.g. PHRASE,
FORMAT).

[BS] the class of built-in statements for use in routines.

[AS] the class of auxiliary statements which the user
may introduce for use in routines.

The last three are only used in the PRIMARY phase of
the CC in which it reads the phrases, formats, and format
routines, i.e. the definitions, syntactic and semantic, of
the language. These formats and the phrase definitions
specific to them can be deleted once the compiler is
"defined" and becomes operational (the SECONDARY
phase). In its undeleted form the compiler remains an
incremental compiler, i.e. further statement definitions
can be added.

The actual storage space occupied (after deletion) by
the various language definitions is given in Table 1.

The parsing algorithm

This has been fully described in Trees and Routines.
It is a top to bottom recognizer taking advantage of
common stems and precedence of alternatives in the
phrase definitions.

The parsing record for the Atlas Autocode statement

/ = 1 + sqrt (x(/)2 + XO2 + ^(02)

amounts to 127 half words. It will be clear from this
that the analysis record resulting from parsing an entire
program as a single source statement may occupy a great
deal of space. In the case of ALGOL this amounted to
about four times that of the source program (packed
4 symbols to a word).

This was overcome in the Atlas ALGOL compiler
(written by R. H. Kerr and J. Clegg of I.C.T. Ltd.) by
using a phrase routine (see below) to define a [BASIC
STATEMENT] as text terminated by a semicolon, etc.,
the parsing record consisting simply of the characters
suitably packed. It would be the function of the routine
for processing the [BASIC STATEMENT] to further
parse the text, that is to analyze it and identify assign-
ment statements, "go to" statements, etc. The detailed
parsing of the lower levels which consumes a great deal
of space is thus suspended until it is actually needed,
and then carried out (basic) statement by statement. In
this way the convenience of using the original syntax is

346

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/4/345/390175 by guest on 19 April 2024

Compiler Compiler experience

preserved. Alternatively after each basic statement in
the syntax a pseudo phrase routine could be inserted
which would convert (and hence condense) the parsing
record of the basic statement to semi-compiled object
code (thereby partly usurping the function of the cor-
responding format routine).

The parsing algorithm has sometimes been criticized
because it operates top-down instead of bottom-up.
However, the grammatical definitions are usually such
that it would make little difference which method is used
if the complete parsing record is to be determined. More
to the point is the fact that complete parsing of a fairly
simple statement such as X= 1 with respect to
[VARIABLE] = [EXPR] involves the construction of
trees with many empty branches. It is the time spent
in this activity, and on the subsequent inspection of the
empty branches in the processing routines, that makes
our approach inherently less efficient than (say) the
technique of operator precedence for arithmetical
expressions. If necessary, however, we can always fall
back on such methods through the use of phrase routines.

Phrase routines

The CC allows the user to substitute in place of a
formal phrase definition an informal phrase routine
which may employ more efficient recognition techniques,
e.g. table look-up (although still using [BS] statements
as far as possible to avoid the use of machine code). In
such cases the parsing algorithm will abandon the
formal procedure and enter the routine provided, which
must of necessity construct its own analysis record. If
this too is informal (which is usually the case) it will also
require informal treatment in the processing (format)
routines. This is in fact the procedure adopted with
most of the permanent or built-in phrase routines,
e.g. [N] = integer. There is no limit to the amount of
analysis which can be put into a phrase routine and if
necessary entire statements can be recognized in this
way. Table 1 indicates the extent to which such routines
have been used.

The format routines

These also are implemented as described in Trees and
Routines. The main point which we would emphasize
here is the desirability of providing compiling versions
(mentioned briefly at the end of that paper) for as many
formats as possible. These enable statements to be
translated into machine orders. In the case of the
[BS] formats the compiling versions are already provided,
and consequently most [BS] statements are fairly
efficient. For example, 01 =]82+3, which refers to
two index registers of Atlas, is replaced by a single
machine order. Control transfers and index testing
instructions are also close to machine code.

Most of the parameter resolving and testing instruc-
tions are compiled by the same criterion. For example

• 3 UNLESS [FACTORS] = * [FACTOR]
[FACTORS]

is replaced by machine orders which
1. take the address of the sub-tree for [FACTORS]

from the stack;
2. compare the category number at the top of this

tree with the category number of * [FACTOR]
[FACTORS] in the definition of [FACTORS]
(i.e. 1) and transfer control to the instruction
labelled 3 if they differ;

3. otherwise (if they are equal) further instructions
take the next two words in the tree for [FACTORS],
which will be the pointers to the trees for
[FACTOR] and the second [FACTORS], and
copy them into the stack positions allocated to the
meta-variables [FACTOR] and [FACTORS].
Thus subsequent instructions may access those
newly located sub-trees.

The operation of the auxiliary statements introduced by
the user may also be of interest. For example

LOAD [PRECEDING ±] [FACTOR]
would be compiled into orders to

1. pick up the address of the sub-trees for
[PRECEDING ±] and [FACTOR] from the
stack and plant them into that part of the stack
which will become the working space for
LOAD [PRECEDING ±][FACTOR];

2. call a shortened version of the routine-changing
sequence.

Those instructions which cannot be compiled into
machine orders and which have to be packed up as
trees within a routine, are interpreted at run time. The
parameter resolving and testing instructions are inter-
preted by a hand-coded subroutine which compares the
trees involved. Auxiliary statements are transplanted
into the stack (as described in Trees and Routines), so
that the relevant subroutine may be entered in the same
way as the top-level routine is entered with the analysis
record of the original statement. Interpretation is time-
consuming (say 50 orders for resolution instructions and
auxiliary statements) and is avoided as far as possible.

A format routine therefore may be partly compiled
and partly interpretive, though generally it is completely
compiled. To give some idea of the space occupied the
LOAD [PRECEDING ±][TERM] routine occupies
36 orders. The total space occupied by the format
routines of the various languages is given in Table 1.
Again this refers to the deleted compilers, since all
compiling versions and many of the [AS] and [BS]
interpretive routines are no longer needed once a
compiler is "defined".

An overall assessment
Compilers for the following languages have been

written with the CC:
EMA ALGOL FORTRAN IV D. Morris and I.C.T.

Compiler team
(R. H. Kerr, J. Clegg
and others).

347

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/4/345/390175 by guest on 19 April 2024

Compiler Compiler experience

Table 2

Breakdown of compiling times

Per cent of total compiling time

Input
Line reconstruction and

pre-editing
Analysis
Processing

Speed 1

Speed 2

EMA

57-9
24-8

1,452

303

ALGOL

27-1

39-2
33-9

1,100

169

FORTRAN 2

11

29-3
59-7

2,275

355

AA

13

23
46
18

537

197

AB

19-8

44-8

\ 35-4

298

112

Notes 1. Speed 1 is the number of machine instructions obeyed
per instruction compiled. Speed 2 is the number of
machine instructions obeyed per character of program
tape. These are average figures for a number of pro-
grams. In each case Speed 1 showed the most individual
variation (the speeds for some programs being as much
as ±50% about the mean). The other measures,
Speed 2 and the distribution ratios, showed much less
variation.

3.

One or two miscellaneous figures are also available:
Speed 1 for an early version of AA was approx. 1,500.
The overall compiling times for the same program run
with EMA and CHLF3 was in the ratio of 3-9 (CHLF3
is a hand coded compiler for a language amounting to
a subset of EMA).
In none of these compilers were any special measures
taken to optimize object code. (FORTRAN 2 was
essentially a first exercise in using the CC.)

ACL

CPL

Atlas Autocode (AA)
Elliott Autocode Mk 111

D. Hendry, Univer-
sity of London Atlas
Computer Service.

G. Colouris, Univer-
sity of London Insti-
tute for Computer
Science.

J. S. Rohl.
R. de Morgan, De-
partment of Social
Medicine, University
of Manchester.

There also exist some augmented versions of the above,
e.g. EMA and ALP, AA and survey analysis package, as
well as purely special-purpose compilers. In addition
the CC has been used as the basis of a scheme for
programming in "natural" language (Napper, 1964).

In only two cases has it been possible to make any
comparison with a hand coded compiler on the same
machine, these being Atlas Autocode and Mercury
Autocode, and comparative figures are given in Table 2.

It will be seen from Table 1 that the (deleted) compilers
produced with the CC are comparatively large, occupying
nearly twice as much space as a hand coded version.
This is no disadvantage if the storage space is available,
although it may restrict the possibilities of time sharing.*

* It was for this reason that the hand coded version of Atlas
Autocode, known as AB, was written by one of us (R.A.B.).
This includes full syntax checking.

The size of an undeleted compiler, however, could be
embarrassing, and it may be desirable to temporarily
delete it for testing purposes, although, in practice it is
often left in undeleted form until it is debugged and
commissioned.

From Table 2 it will be seen that the total compiling
times of a CC compiler can be up to four or five times as
slow as a conventional compiler, unless special provision
is made to optimize those paths most frequently taken
through the compiler, in which case it is possible to
reduce this factor to 2 or less, as has been done in the
case of AA. This could be done by recasting (and if
necessary hand coding) certain phrases as phrase routines,
and the relevant sections of the format routines (see
Table 1). Certain [AS] routines may need compiling
versions. One may also rearrange the phrase definitions
to give frequently occurring phrases order of precedence
(where this does not conflict with the logic of the
definitions) and possibly recast them to reduce the
logical depth of the set.f

Coding with [BS] statements and hand coding, though
a chore, are less repugnant when using a modular sub-
routine system such as the CC provides, in which formal
and informal routines can be interchanged. Optimiza-
tion by recasting the logic of the definitions may or may
not be convenient, and if it results in lack of transparency
may defeat the purpose of the CC.

t A recent investigation has shown that reorganization of the
internal representation of phrase definitions together with the
parsing routine could improve the time for formal syntax analysis
by a factor of 2.

348

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/4/345/390175 by guest on 19 April 2024

Compiler Compiler experience

Whatever lengths one may go to, however, formal use
of the CC will inevitably result in loss of compiling speed,
partly because of the formal division between syntax
analysis and processing, but mainly perhaps because of
the way in which arithmetical expressions are handled
(see the remarks made earlier under The parsing
algorithm). Some speed is also lost in the processing
routines because we chose to make them dynamically
relocatable, e.g. by use of relative jumps. (See the
account of the "sliding store" in Trees and Routines.)

With the CC as with any other programming language
one may write good programs and bad programs, and
before attempting any detailed optimization one should
ensure that the program is conceived on a sound logical
basis. One may also write more, or less, ambitious
programs depending on how efficiently the object
program of the compiler is to run. In most of the
compilers listed above the object code is fairly good,
but no serious optimization has been attempted. The
CC compares favourably with conventional languages
such as FORTRAN used for the same purpose since the
compilers for these languages do not usually compile
particularly efficient code for integer manipulation and
logical operations.

We feel it is quicker to produce compilers by using
the CC than by hand coding them, although it is not
easy to substantiate this. The compilers listed above
took between 0-5 and 2 man-years to produce, depending
upon the complexity of the language and the degree of
optimization built-in. The hand coded compiler for AB
took less than one man-year, but it used many ideas
developed in AA and also the AA PERM package. (A
significant fraction of the time taken in producing a
compiler is absorbed by deciding the form of the compiled
code and in coding the PERM package.) Coding using
the CC is certainly less demanding, and it is more

References

feasible to produce compilers as a part-time activity,
and to use lower grade staff to do this. In this case
considerable debugging assistance can be given during
short and infrequent periods of supervision. Finally
we would stress that the CC is particularly valuable when
the syntax is complicated.

Other applications
The CC has also been used in some data processing

applications, one of the first being the interpretation of
the Atlas logging data.* The Atlas produces on a
special punch at the completion of every job a great
deal of logging information about the job. For example,
time on and time off, a job title, a code to indicate from
which department, university or firm the job originated,
how much time was spent on input, compiling, com-
puting and output, how much store was used during
compiling and running. Further information is punched
every time the machine detects a fault and restarts itself,
and during the engineers' test programs.

The tape was processed each day by a CC program
which, using phrase structure definitions of the logging
information, read it and converted it to a canonical form
on magnetic tape, for subsequent processing by an Atlas
Autocode program which produced daily and monthly
statements for each department, and other miscel-
laneous statistics.

Acknowledgements
We are indebted to the writers of the compilers

concerned for many of the figures given in Tables 1 and 2.

* A special compiler LOG was written for this purpose by
S. Moore (now in the Economics Department University of
Manchester).

BROOKER, R. A., MACCALLUM, I. R., MORRIS, D., and ROHL, J. S. C1963). "The Compiler Compiler", Annual Review in
Automatic Programming, Vol. 3, London: Pergamon.

BROOKER, R. A., MORRIS, D., and ROHL, J. S. (1962). "Trees and Routines", The Computer Journal, Vol. 5, p. 33.
BROOKER, R. A., ROHL, J. S., and CLARK, S. R. (1966). "The Main Features of Atlas Autocode", The Computer Journal,

Vol. 8, p. 303.
NAPPER, R. B. E. (1964). "A System for defining language and writing programs in 'Natural English' ", Formal Language

Description Languages for Computer Programming (Ed. Steel), Amsterdam: North Holland.
NAPPER, R. B. E. (1966). An Introduction to the Compiler Compiler, Manchester University (unpublished).
ROSEN, S. (1964). "A Compiler-Building System Developed by Brooker and Morris", Comm. A.C.M., Vol. 7, No. 7, p. 403.

349

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/4/345/390175 by guest on 19 April 2024

