
Compiler Compiler facilities in Atlas Autocode

By R. A. Brooker, D. Morris and J. S. Rohl*

This paper describes how the essential phrase structure facilities of the Compiler Compiler have
been added to Atlas Autocode. Although the description is in terms of Atlas Autocode they could
just as easily be inserted in other languages.

As we have demonstrated in another paper in this
issue (see page 345), the Compiler Compiler has proven
itself to be a very useful tool in writing compilers. As we
came to use it for more general data-processing tasks,
the lack of any comprehensive arithmetic facilities
became a limitation. Rather than add these to the
Compiler Compiler, we chose to add the phrase structure
features of the Compiler Compiler to an algebraic
compiler.

This is Atlas Autocode (AA), which has been described
elsewhere (Brooker, Rohl and Clark, 1966), but which
can be thought of as a dialect of ALGOL. So far we
have implemented a minimum of facilities, and we may
be forced to add others in the light of experience. It is
the broad outlines, however, which are of interest. In
this description we assume a knowledge of the concepts
discussed in "Experience with the Compiler Compiler"
(see page 345).

Phrases, format classes and formats
PHRASES, FORMAT CLASSES and FORMATS

can be regarded as declarations which instead of reserving
space as the type declarations do, cause dictionaries to
be created or added to, and packed up within the object
program. For PHRASE names we use ordinary AA
identifiers (instead of enclosing them in square brackets),
and basic symbols are enclosed in quotes. Concatenation
is indicated by a period. Consider the phrases for
"digit" and "integer" in Compiler Compiler format

PHRASE [INTEGER] = [DIGIT][INTEGER],
[DIGIT]

PHRASE [DIGIT] = 1, 2, 3, 4, 5, 6, 7, 8, 9

In Atlas Autocode these appear

phrase integer = digit . integer, digit
phrase digit = '01, 'I1, '2', "31, '4', '5', '6', '7', '8', '9'

The phrase identifiers in FORMAT CLASSES and
FORMATS are also replaced by AA identifiers so that
we might have, for example:

Thus the syntax can be easily defined in terms of
phrase, format class and format statements. There is, of
course, no built-in master routine to control the reading,
recognition and processing of data. A compiler written
using these features will contain phrase and format
definitions (with the usual type declarations, routine
specifications and routines themselves) followed by a
very short piece of program which will read in a line
(or, if translating ALGOL, a whole program), pre-edit
it if necessary, call the analysis routine and, if analysis
is successful, call the processing routine to enter the
correct format routine (see below). Fig. 1 gives an
outline of such a compiler.

begin

format class ss
ss format variable . ' = ' . expr

* Department of Computer Science, The University, Manchester, 13.

350

declaration of global variables
routine specifications

phrase definitions such as
phrase program = block, compound statement
phrase block = label. ':'. block, unlabelledblock

etc.

format class algol
algol format program

algol routine program

end

subroutines necessary
for the translation

1:

pre edit (A)
i = o ; j = 0
analyze (A,i,BJ,dict {algol), result)
-s-1 H result — — 1
process (fl. 0)
enter compiled program
caption syntax g faulty jl
end of program

Fig. 1

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/4/350/390181 by guest on 19 April 2024



Compiler Compiler facilities

Permanent routines
Two routines are provided within the AA PERM

material.

(i) routine analyze (integer arrayname A, c

integername i integer arrayname B, integername/, c

integer dictionary, integername result)

This routine analyzes (i.e. parses) the pre-edited
source string in A starting at A{i) with respect to the
dictionary whose address is given by dictionary to
produce an analysis record in B starting at B(J). Both
i and j are advanced over the recognized string and
analysis record, respectively, and result is set to 1 if
recognition has taken place, to —1 otherwise. Since
addresses are not explicitly known in AA, the function
diet is provided to find the address of any phrase or
format class.

(ii) routine process (integer arrayname B, integer j)

This routine inspects the analysis record in B starting
at B(j) and calls the relevant format routine.

Format routines
A FORMAT ROUTINE has a similar heading to its

corresponding format. For example:

ss routine variable . '=' . expr

Within the routine integers are used to store information
about phrases. In the above example variable and
expr are automatically declared integers but all others
must be declared explicitly. The statements of the
routines are normal AA statements to which have been
added two extra resolution statements corresponding to,
for example:

LET [EXPR] = [PRECEDING ± ][TERM] [TERMS]

-s- 1 UNLESS [TERMS] = [±][TERM] [TERMS]

and a built-in function category.
Let us consider how the routine

ROUTINE [SS] = [VARIABLE] = [EXPR]

presented in "Experience with the Compiler Compiler"
would appear in Atlas Autocode.

ss routine variable . ' = ' . expr

integer plus or minus', term, terms, plus or minus

resolve expr into plus or minus' . term . terms
load term {plus or minus, term)

2: -*- 1 unless terms resolves into plus or minus . term c
. terms

add term {plus or minus, term)

1: dump ace in variable {variable)
end

Whereas the Compiler Compiler version used [AS]
routines as subroutines, the Atlas Autocode version uses
ordinary AA routines such as load term. These may,
of course, also use the resolution instructions described
above.

routine load term (integer plus or minus', term)

integer factor, factors

resolve term into factor . factors

load factor {plus or minus', factor)

2: —> 1 unless factors resolves into '/' -factor .factors

div by factor {factor)

-+2

1: -*- 3 unless factors resolves into '*' . factor . factors

mult by factor (factor)

- = • 2

3: end

Implementation
The action of compilers written this way should be

fairly clear, but some idea of the implementation may
be useful.

PHRASE definitions give rise to dictionaries of
exactly the same form as those of the Compiler Compiler,
except that the BUT NOT and NIL features do not
exist. The dictionaries are packed up within the com-
piled program and a jump planted around them.

FORMAT CLASS definitions cause an empty dic-
tionary to be created using a chain store.

FORMAT definitions cause the formats to be added
to the relevant FORMAT CLASS dictionary. Before
the end of the program a statement such as pack ss
dictionary is required.

ROUTINE headings are first looked up in the
appropriate dictionary to check that a format has
already appeared. (At present, a format is inserted if
one has not already appeared.) The phrase names in
the heading are then treated formally as integer
declarations.

At run time, the analysis routine produces an analysis
record which is exactly the same as that produced by
the Compiler Compiler. The process routine inspects
this analysis record and calls in the relevant format
routine, handing on the addresses of the principal sub-
trees as the parameters. Thus in our example on entry,
program contains the address of that part (almost the
whole) of the analysis record which refers to program.

RESOLUTION instructions are much simpler than
the corresponding Compiler Compiler formats since
resolution can only proceed one level at a time. At
compile time, the dictionary corresponding to the left-
hand name is scanned to ensure that the right-hand side
is an acceptable alternative. For example, the dictionary

351

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/4/350/390181 by guest on 19 April 2024



Compiler Compiler facilities

corresponding to terms is scanned to ensure that plus
or minus . term . terms is an alternative when compiling
the instruction

-> 1 unless terms resolves into plus or minus . term c
. terms

At run time, the tree whose address is in terms is
inspected to see whether it actually conforms to the
right-hand-side. If it does the addresses of its principal
sub-trees are planted in plus or minus, term and terms;
otherwise control passes to the instruction labelled 1.

Conclusion
The system just described uses integers to refer to trees

and sub-trees. A theoretically more satisfying scheme
using more formal concepts of type and reference for
this purpose has been described by Brooker and Rohl
(1965). The present scheme, however, has the advantage
that it can be fairly easily grafted on to any compiler
in which integers can serve as store addresses.

The facilities have been part of the Atlas Autocode
(AA) compiler since April 1966, and have found a wide
variety of uses. A compiler for a language called BB,
which is a subset of AA, has been written and debugged,

and a compiler for a logical design language is at present
under development.

They have found further use in more general data
processing jobs. The logging program mentioned
earlier has been re-written, and a program to process all
the applications for places in this department's honours
course has been constructed. This program accepts as
data (j) the original application of the student to the
U.C.C.A., (ii) any updating material such as offers from
other universities and interview assessments, and
(iii) interrogatory statements about the state of appli-
cations, such as

LIST ALL NAMES INTERVIEWED IN
ALPHABETICAL ORDER

Two translation programs have also been written.
One converts an AA program from its normal mode
into upper case delimiter mode (see Brooker, et ah,
1967) and at the same time allows the user to change
whatever identifiers he chooses throughout the program.
The second converts ALGOL procedures into AA
routines. This is in an undeveloped state yet but it is
hoped shortly to be able to translate completely some
90 % of the published algorithms.

References
BROOKER, R. A., MORRIS, D., and ROHL, J. S. (1967). "Experience with the Compiler Compiler", The Computer Journal, Vol. 9,

p. 345.
BROOKER, R. A., and ROHL, J. S. (1965). "Simply Partitioned Data Structures", Proceedings of a Machine Intelligence Workshop

1965 (Ed. Michie, to be published by Oliver and Boyd).
BROOKER, R. A., ROHL, J. S., and CLARK, S. R. (1966). "The Main Features of Atlas Autocode", The Computer Journal,

Vol. 8, p. 303.

Book Review

A Syntax-Oriented Translator, by P. Z. Ingerman, 1966;
131 pages. (New York: Academic Press, 48s.)

It is difficult to review a book the chief deficiencies of which
are announced as such by the author by the end of the third
paragraph of his preface. Indeed, the author further dis-
arms us by overstating the case against himself and his book;
he has not committed hubris and the wrath of the gods will
be withheld so that he may live to assay Olympus yet again.

The title well describes the book, which was originally
intended "for the home compiler-writer". When the author
concluded that people do not write compilers at home he
forgot that they may be required to do so in a provincial
computer installation, very often a more difficult task. It is
thus sad that the book needs a "patient reader". Would it
have been possible to produce a simple cookbook, three
times the size and five times the value to the trade? In the
present overburdened state of education everywhere we need
more instruction manuals.

A reader with enough persistence can certainly use this
book to help implement a syntax-oriented translator, and to

devise the language and machine descriptions for some cases
of interest. The major, all too common, defect of the book
is the use of the assignment statement of ALGOL and
FORTRAN as the worked example. We hope for an author
who will choose the COBOL option "Move Corresponding",
preferably from a group of computational fields to a display
record; or perhaps the "Preserve", "Restore", or "Task"
options of PL/1. These are examples where this type of
translator might show advantages over the "operator/operand
stacks" method of Dijkstra, and Randell and Russell, which
is perfectly adequate for arithmetic expressions and perfectly
general if designed properly to be table-driven.

More precisely, given a machine with basic software and
an arbitrary language not foreseen by the designers of the
software to implement on that machine, then the design of
the structure of the object program to model the semantics
of the language is far more difficult than the syntax analysis
of the language. But a generalized syntax analyzer is a
worthwhile convenience.

H. D. BAECKER

352

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/4/350/390181 by guest on 19 April 2024




